Skip to main content
Erschienen in: Computational Mechanics 5/2017

21.01.2017 | Original Paper

Heat jet approach for finite temperature atomic simulations of triangular lattice

verfasst von: Baiyili Liu, Shaoqiang Tang, Jun Chen

Erschienen in: Computational Mechanics | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a heat jet approach for atomic simulations at finite temperature of a triangular lattice. First we design a matching boundary condition by carefully examining a residual function based on the lattice dispersion relation. It leads to a two-way boundary condition, where prescribed incoming waves are included with a source term. Meanwhile, we adopt a phonon representation to determine Fourier mode amplitudes. The heat jet approach is then formulated by combining the two-way boundary condition and the phonon representation of heat source. Numerical tests of a tube-shaped computational domain illustrate the accuracy and effectiveness in simultaneously resolving thermal fluctuations and non-thermal motion at a given temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zwanzig R (2001) Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford Zwanzig R (2001) Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford
2.
Zurück zum Zitat Anderson HC (1980) Molecular dynamics simulation at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRef Anderson HC (1980) Molecular dynamics simulation at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRef
3.
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, DiHola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiHola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
4.
Zurück zum Zitat Bussi G, Parrinello M (2007) Accurate sampling using Langevin dynamics. Phys Rev E 75:056707CrossRef Bussi G, Parrinello M (2007) Accurate sampling using Langevin dynamics. Phys Rev E 75:056707CrossRef
5.
Zurück zum Zitat Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRef Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRef
6.
Zurück zum Zitat Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRef Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRef
7.
Zurück zum Zitat Lepri S, Livi R, Politi A (2003) Thermal conduction in classical low-dimensional lattices. Phys Rep 377:1–80MathSciNetCrossRef Lepri S, Livi R, Politi A (2003) Thermal conduction in classical low-dimensional lattices. Phys Rep 377:1–80MathSciNetCrossRef
8.
Zurück zum Zitat Xiong D, Zhang Y, Zhao H (2014) Temperature dependence of heat conduction in the Fermi–Pasta–Ulam–beta lattice with next-nearest-neighbor coupling. Phys Rev E 90:022117CrossRef Xiong D, Zhang Y, Zhao H (2014) Temperature dependence of heat conduction in the Fermi–Pasta–Ulam–beta lattice with next-nearest-neighbor coupling. Phys Rev E 90:022117CrossRef
9.
Zurück zum Zitat Sun T, Wang J, Kang W (2014) Heat transfer in heterogeneous nanostructures can be described by a simple chain model. Phys Chem Chem Phys 16:16914–16918CrossRef Sun T, Wang J, Kang W (2014) Heat transfer in heterogeneous nanostructures can be described by a simple chain model. Phys Chem Chem Phys 16:16914–16918CrossRef
10.
Zurück zum Zitat Zhang C, Kang W, Wang J (2016) Thermal conductance of one-dimensional materials calculated with typical lattice models. Phys Rev E 94:052131CrossRef Zhang C, Kang W, Wang J (2016) Thermal conductance of one-dimensional materials calculated with typical lattice models. Phys Rev E 94:052131CrossRef
11.
Zurück zum Zitat Ai B, Hu B (2011) Heat conduction in deformable Frenkel-Kontorova lattices: thermal conductivity and negative differential thermal resistance. Phys Rev E 83:011131CrossRef Ai B, Hu B (2011) Heat conduction in deformable Frenkel-Kontorova lattices: thermal conductivity and negative differential thermal resistance. Phys Rev E 83:011131CrossRef
12.
Zurück zum Zitat Sun T, Wang J, Kang W (2013) Van der Waals interaction-tuned heat transfer in nanostructures. Nanoscale 5:128–133CrossRef Sun T, Wang J, Kang W (2013) Van der Waals interaction-tuned heat transfer in nanostructures. Nanoscale 5:128–133CrossRef
13.
Zurück zum Zitat Giardiná C, Livi R, Politi A, Vassalli M (2000) Finite thermal conductivity in 1D lattices. Phys Rev Lett 84:2144–2147CrossRef Giardiná C, Livi R, Politi A, Vassalli M (2000) Finite thermal conductivity in 1D lattices. Phys Rev Lett 84:2144–2147CrossRef
14.
Zurück zum Zitat Fu W, Jin T, He D, Qu S (2015) Effect of dynamical localization on negative differential thermal resistance. Phys A 433:211–217CrossRef Fu W, Jin T, He D, Qu S (2015) Effect of dynamical localization on negative differential thermal resistance. Phys A 433:211–217CrossRef
15.
Zurück zum Zitat Zhong Y, Zhang Y, Wang J, Zhao H (2012) Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions. Phys Rev E 85:060102CrossRef Zhong Y, Zhang Y, Wang J, Zhao H (2012) Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions. Phys Rev E 85:060102CrossRef
16.
Zurück zum Zitat Savin AV, Kosevich YA (2014) Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys Rev E 89:032102CrossRef Savin AV, Kosevich YA (2014) Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys Rev E 89:032102CrossRef
17.
Zurück zum Zitat Yang L, Grassberger P, Hu B (2006) Dimensional crossover of heat conduction in low dimensions. Phys Rev E 74:062101CrossRef Yang L, Grassberger P, Hu B (2006) Dimensional crossover of heat conduction in low dimensions. Phys Rev E 74:062101CrossRef
18.
Zurück zum Zitat Wang L, Hu B, Li B (2012) Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Phys Rev E 86:040101CrossRef Wang L, Hu B, Li B (2012) Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Phys Rev E 86:040101CrossRef
19.
Zurück zum Zitat Lippi A, Livi R (2000) Heat conduction in two-dimensional nonlinear lattices. J Stat Phys 100:1147–1172CrossRefMATH Lippi A, Livi R (2000) Heat conduction in two-dimensional nonlinear lattices. J Stat Phys 100:1147–1172CrossRefMATH
20.
Zurück zum Zitat Barik D (2006) Heat conduction in 2D harmonic lattices with on-site potential. Europhys Lett 75:42–48CrossRef Barik D (2006) Heat conduction in 2D harmonic lattices with on-site potential. Europhys Lett 75:42–48CrossRef
21.
Zurück zum Zitat Xiong D, Wang J, Zhang Y, Zhao H (2010) Heat conduction in two-dimensional disk models. Phys Rev E 82:030101CrossRef Xiong D, Wang J, Zhang Y, Zhao H (2010) Heat conduction in two-dimensional disk models. Phys Rev E 82:030101CrossRef
22.
Zurück zum Zitat Karpov EG, Park HS, Liu WK (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Methods Eng 70:351–378MathSciNetCrossRefMATH Karpov EG, Park HS, Liu WK (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Methods Eng 70:351–378MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tang S, Liu B (2015) Heat jet approach for atomic simulations at finite temperature. Commun Comput Phys 18:1445–1460CrossRef Tang S, Liu B (2015) Heat jet approach for atomic simulations at finite temperature. Commun Comput Phys 18:1445–1460CrossRef
24.
Zurück zum Zitat Tang S, Liu B (2016) Heat jet approach for finite temperature atomic simulation of two-dimensinal square lattice. Multisc Multiphys Mech 1:201–224CrossRef Tang S, Liu B (2016) Heat jet approach for finite temperature atomic simulation of two-dimensinal square lattice. Multisc Multiphys Mech 1:201–224CrossRef
26.
Zurück zum Zitat Tang S, Fang M (2010) Unstable surface modes in finite chain computations: deficiency of reflection coefficient approach. Commun Comput Phys 8:143–158 Tang S, Fang M (2010) Unstable surface modes in finite chain computations: deficiency of reflection coefficient approach. Commun Comput Phys 8:143–158
27.
Zurück zum Zitat Tang S (2010) A two-way interfacial condition for lattice simulations. Adv Appl Math Mech 2:45–55MathSciNet Tang S (2010) A two-way interfacial condition for lattice simulations. Adv Appl Math Mech 2:45–55MathSciNet
28.
Zurück zum Zitat Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Oxford University Press, OxfordMATH Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Oxford University Press, OxfordMATH
29.
Zurück zum Zitat Wang X (2010) Matching boundary conditions for atomic simulations of crystalline solids. PhD thesis, Tsinghua University, Beijing Wang X (2010) Matching boundary conditions for atomic simulations of crystalline solids. PhD thesis, Tsinghua University, Beijing
30.
Zurück zum Zitat Li S, Sheng N, Liu X (2008) A non-equilibrium multiscale simulation paradigm. Chem Phys Lett 451:293C300 Li S, Sheng N, Liu X (2008) A non-equilibrium multiscale simulation paradigm. Chem Phys Lett 451:293C300
31.
Zurück zum Zitat Liu WK, Qian D, Gonella S, Li S, Chen W, Chirputkar S (2010) Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum. Int J Numer Methods Eng 83:1039–1080CrossRefMATH Liu WK, Qian D, Gonella S, Li S, Chen W, Chirputkar S (2010) Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum. Int J Numer Methods Eng 83:1039–1080CrossRefMATH
Metadaten
Titel
Heat jet approach for finite temperature atomic simulations of triangular lattice
verfasst von
Baiyili Liu
Shaoqiang Tang
Jun Chen
Publikationsdatum
21.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1376-5

Weitere Artikel der Ausgabe 5/2017

Computational Mechanics 5/2017 Zur Ausgabe

Neuer Inhalt