Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2022

01.12.2022

Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon

verfasst von: V. E. Zhukov, N. N. Mezentseva, A. N. Pavlenko

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents the results of experimental studies of the efficiency of heat transfer on a flat rectangular (\(16\times 24\) mm2) heat transfer surface ( HTS) modified via additive manufacturing. Comparative experimental studies were carried out on an unmodified HTS and two modified HTSeswith different geometric parameters of the modifying coating. A porous sinusoidal coating consisting of spherical bronze granules with an average diameter of 35 \(\mu\)m was 3D printed on the brass base of the heat transfer unit. The coating thickness is 150 \(\mu\)m in the deepenings and 300 \(\mu\)m and 700 \(\mu\)m on the ridges. The heat transfer was studied during free-convection boiling of liquid freon R21 at heat flux densities of 200–\(5\cdot 10^5\) W/m2 at a reduced pressure of 0.03. The experiments have shown that for the modified surfaces, activation of nucleation sites begins at a significantly lower heat flux density compared with the case of the smooth unmodified surface. Under conditions of activated nucleation sites on a modified surface, the heat transfer coefficient increases 4–5 times. Activation of nucleation sites is realized in the deepenings of the sinusoidal coating. Upon activation of nucleation sites (at heat loads less than 100,000 W/m2), the heat transfer intensity is the same for both studied surfaces having the same coating thickness in the deepenings. On the surface with significantly higher ridges at heat loads \(10,000 < q< 300,000\) W/m2 upon activation of nucleation sites, the temperature difference observed is smaller than that on the surface with smaller ridges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kurihara, H.M. and Myers, J.E., The Effects of Superheat and Surface Roughness on Boiling Coefficients, AIChE J., 1960, vol. 6, no. 1, pp. 83–91.CrossRef Kurihara, H.M. and Myers, J.E., The Effects of Superheat and Surface Roughness on Boiling Coefficients, AIChE J., 1960, vol. 6, no. 1, pp. 83–91.CrossRef
2.
Zurück zum Zitat Berenson, P.J., Experiments on Pool-Boiling Heat Transfer, Int. J. Heat Mass Transfer, 1962, vol. 5, no. 10, pp. 985–999.CrossRef Berenson, P.J., Experiments on Pool-Boiling Heat Transfer, Int. J. Heat Mass Transfer, 1962, vol. 5, no. 10, pp. 985–999.CrossRef
3.
Zurück zum Zitat Danilova, G.N. and Bel’skii, V.K., Study of Heat Transfer at Boiling of Freons 113 and 12 on Tubes of Various Roughness, Kholod. Tekh., 1965, vol. 4, pp. 24–28. Danilova, G.N. and Bel’skii, V.K., Study of Heat Transfer at Boiling of Freons 113 and 12 on Tubes of Various Roughness, Kholod. Tekh., 1965, vol. 4, pp. 24–28.
4.
Zurück zum Zitat Gogonin, I.I., The Effect of Artificial Vaporization Centers on Heat Exchange During Boiling of the Film Irrigating a Bundle of Horizontal Finned Pipes, Thermophys. Aeromech., 2021, vol. 28. no. 5, pp. 697–702; doi.10.1134/S0869864321050103.ADSCrossRef Gogonin, I.I., The Effect of Artificial Vaporization Centers on Heat Exchange During Boiling of the Film Irrigating a Bundle of Horizontal Finned Pipes, Thermophys. Aeromech., 2021, vol. 28. no. 5, pp. 697–702; doi.10.1134/S0869864321050103.ADSCrossRef
5.
Zurück zum Zitat Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.10.1016/j.expthermflusci.2015.03.023.CrossRef Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.10.1016/j.expthermflusci.2015.03.023.CrossRef
6.
Zurück zum Zitat Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.CrossRef Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.CrossRef
7.
Zurück zum Zitat Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef
8.
Zurück zum Zitat Das, S., Kumar, D. S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef Das, S., Kumar, D. S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef
9.
Zurück zum Zitat Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/ j.ijheatmasstransfer.2018.05.033.CrossRef Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/ j.ijheatmasstransfer.2018.05.033.CrossRef
10.
Zurück zum Zitat Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef
11.
Zurück zum Zitat Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.CrossRef Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.CrossRef
12.
Zurück zum Zitat Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef
13.
Zurück zum Zitat Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; DOI:10.3791/55387CrossRef Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; DOI:10.3791/55387CrossRef
14.
Zurück zum Zitat Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024.CrossRef Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024.CrossRef
15.
Zurück zum Zitat Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef
16.
Zurück zum Zitat Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef
17.
Zurück zum Zitat Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef
18.
Zurück zum Zitat Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef
19.
Zurück zum Zitat Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.CrossRef Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.CrossRef
20.
Zurück zum Zitat Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef
21.
Zurück zum Zitat Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef
22.
Zurück zum Zitat Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Experimental Thermal and Fluid Science, 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.CrossRef Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Experimental Thermal and Fluid Science, 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.CrossRef
23.
Zurück zum Zitat Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135. Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.
24.
Zurück zum Zitat McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in Procs. of the Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, no. 4000138, pp. 64–72; DOI:10.1109/STHERM.1991.152914. McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in Procs. of the Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, no. 4000138, pp. 64–72; DOI:10.1109/STHERM.1991.152914.
25.
Zurück zum Zitat Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.CrossRef Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.CrossRef
26.
Zurück zum Zitat Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.CrossRef Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.CrossRef
27.
Zurück zum Zitat Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef
28.
Zurück zum Zitat Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.
29.
Zurück zum Zitat Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.
30.
Zurück zum Zitat Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916. Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.
31.
Zurück zum Zitat Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V. Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211ADSCrossRef Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V. Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211ADSCrossRef
32.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, vol. 129, pp. 105743-1–105743-13.CrossRef Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, vol. 129, pp. 105743-1–105743-13.CrossRef
33.
Zurück zum Zitat Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Dissipation and Critical Heat Flux on a Modified Surface at Boiling under Conditions of Natural Convection, Teplofiz. Aeromekh., 2022, vol. 29, no. 3, pp. 445–449.CrossRef Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Dissipation and Critical Heat Flux on a Modified Surface at Boiling under Conditions of Natural Convection, Teplofiz. Aeromekh., 2022, vol. 29, no. 3, pp. 445–449.CrossRef
34.
Zurück zum Zitat Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids-A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.CrossRef Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids-A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.CrossRef
35.
Zurück zum Zitat Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef
36.
Zurück zum Zitat Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef
37.
Zurück zum Zitat Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef
38.
Zurück zum Zitat Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoel., Instr. Data Process., 2019, vol. 55, no. 6, pp. 554–563. DOI:10.3103/S8756699019060049.ADSCrossRef Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoel., Instr. Data Process., 2019, vol. 55, no. 6, pp. 554–563. DOI:10.3103/S8756699019060049.ADSCrossRef
39.
Zurück zum Zitat Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163; DOI:10.1134/S1810232813040012. Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163; DOI:10.1134/S1810232813040012.
40.
Zurück zum Zitat Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Eng. Therm., 2021, vol. 30, pp. 1–13; https://doi.org/10.1134/S181023282101001X.CrossRef Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Eng. Therm., 2021, vol. 30, pp. 1–13; https://​doi.​org/​10.​1134/​S181023282101001​X.​CrossRef
41.
Zurück zum Zitat Spalding, D.B., Heat Exchanger Design Handbook. Heat Exchanger Theory, Hemisphere, 1983. Spalding, D.B., Heat Exchanger Design Handbook. Heat Exchanger Theory, Hemisphere, 1983.
Metadaten
Titel
Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon
verfasst von
V. E. Zhukov
N. N. Mezentseva
A. N. Pavlenko
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822040014

Weitere Artikel der Ausgabe 4/2022

Journal of Engineering Thermophysics 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.