Skip to main content

2014 | OriginalPaper | Buchkapitel

13. Heat Transport in Porous Media

verfasst von : Hans-Jörg G. Diersch

Erschienen in: FEFLOW

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we discuss the finite-element computation of heat (thermal energy) transport in porous media. Nonisothermal porous-medium processes can be found in many areas of application to natural and engineered systems, for instance exploitation of geothermal reservoirs as a viable and renewable source of energy, underground energy storage and recovery for heating and cooling purposes, waste disposal of heat-generating materials, chemical reactor engineering, insulation of buildings, material technology and many others. Modern industrial developments have expanded significantly the fields, where numerical simulation is required as a powerful tool to aid the design and operation of equipments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The divergence form (13.1) assumes that the specific heat capacities c and c s are independent of T (cf. Sect. 3.​9.​1). Contrarily, the convective form (13.2) does not imply such an assumption.
 
2
Optionally, FEFLOW suppresses the time derivative term ∂ T∂ t for solving steady-state solutions. A specific option exists, named steady flow – transient transport, in which the advective flow vector \(\boldsymbol{q}\) is invariant with time.
 
3
A boundary with OBC on \(\varGamma _{N_{O}}\) can be separated from the Neumann boundary \(\varGamma _{N_{T}}\) so that for the divergence form
$$\displaystyle{\int _{\varGamma _{N_{ T}}}wq_{T}^{\dag }d\varGamma =\int _{\varGamma _{ N_{T}}\setminus \varGamma _{N_{O}}}wq_{T}^{\dag }d\varGamma +\int _{\varGamma _{ N_{O}}}w\bigl ((T - T_{0})\rho c\boldsymbol{q} -\boldsymbol{\varLambda }\cdot \nabla T\bigr ) \cdot \boldsymbol{ n}d\varGamma }$$
and for the convective form
$$\displaystyle{\int _{\varGamma _{N_{ T}}}wq_{T}d\varGamma =\int _{\varGamma _{N_{ T}}\setminus \varGamma _{N_{O}}}wq_{T}d\varGamma -\int _{\varGamma _{N_{O}}}w(\boldsymbol{\varLambda }\cdot \nabla T) \cdot \boldsymbol{ n}d\varGamma }$$
The implicit treatment of OBC requires the incorporation of the \(\varGamma _{N_{O}}-\) integrals into the LHS of the resulting matrix system (see below). In contrast, a natural Neumann-type BC with \(-(\boldsymbol{\varLambda }\cdot \nabla T) \cdot \boldsymbol{ n} \approx 0\) on \(\varGamma _{N_{O}}\) is often the preferred alternative formulation for an OBC. Note, however, that for both cases in the divergence form the boundary flux \(\boldsymbol{q} \cdot \boldsymbol{ n}\) must be known a priori. The boundary flux \(\boldsymbol{q} \cdot \boldsymbol{ n}\) can be either explicitly given from a Neumann-type BC \(q_{h} =\boldsymbol{ q} \cdot \boldsymbol{ n}\) for flow or must be computed by a postprocessing budget evaluation of the flow equation on the corresponding outflowing boundary section imposed by Dirichlet-type or Cauchy-type BC of flow.
 
Literatur
6.
Zurück zum Zitat Al-Khoury, R.: Computational Modeling of Shallow Geothermal Systems. CRC/Balkema/ Taylor & Francis, London (2012) Al-Khoury, R.: Computational Modeling of Shallow Geothermal Systems. CRC/Balkema/ Taylor & Francis, London (2012)
7.
Zurück zum Zitat Al-Khoury, R., Bonnier, P.: Efficient finite element formulation for geothermal heating systems. Part II: Transient. Int. J. Numer. Methods Eng. 67(5), 725–745 (2006)CrossRef Al-Khoury, R., Bonnier, P.: Efficient finite element formulation for geothermal heating systems. Part II: Transient. Int. J. Numer. Methods Eng. 67(5), 725–745 (2006)CrossRef
8.
Zurück zum Zitat Al-Khoury, R., Bonnier, P., Brinkgreve, R.: Efficient finite element formulation for geothermal heating systems. Part I: Steady state. Int. J. Numer. Methods Eng. 63(7), 988–1013 (2005)CrossRef Al-Khoury, R., Bonnier, P., Brinkgreve, R.: Efficient finite element formulation for geothermal heating systems. Part I: Steady state. Int. J. Numer. Methods Eng. 63(7), 988–1013 (2005)CrossRef
14.
Zurück zum Zitat Austin, W., Yavuzturk, C., Spitler, J.: Development of an in-situ system and analysis procedure for measuring ground thermal properties. ASHRAE Trans. 106(1), 356–379 (2000) Austin, W., Yavuzturk, C., Spitler, J.: Development of an in-situ system and analysis procedure for measuring ground thermal properties. ASHRAE Trans. 106(1), 356–379 (2000)
15.
Zurück zum Zitat Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRef Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRef
25.
Zurück zum Zitat Banks, D.: An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell, Oxford (2008)CrossRef Banks, D.: An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell, Oxford (2008)CrossRef
28.
Zurück zum Zitat Bauer, D., Heidemann, W., Diersch, H.J.: Transient 3D analysis of borehole heat exchanger modeling. Geothermics 40(4), 250–260 (2011)CrossRef Bauer, D., Heidemann, W., Diersch, H.J.: Transient 3D analysis of borehole heat exchanger modeling. Geothermics 40(4), 250–260 (2011)CrossRef
29.
Zurück zum Zitat Bauer, D., Heidemann, W., Müller-Steinhagen, H., Diersch, H.J.: Thermal resistance and capacity models for borehole heat exchangers. Int. J. Energy Res. 35(4), 312–320 (2011)CrossRef Bauer, D., Heidemann, W., Müller-Steinhagen, H., Diersch, H.J.: Thermal resistance and capacity models for borehole heat exchangers. Int. J. Energy Res. 35(4), 312–320 (2011)CrossRef
33.
Zurück zum Zitat Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972) Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
145.
Zurück zum Zitat Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals. Comput. Geosci. 37(8), 1122–1135 (2011) Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals. Comput. Geosci. 37(8), 1122–1135 (2011)
146.
Zurück zum Zitat Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation. Comput. Geosci. 37(8), 1136–1147 (2011) Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation. Comput. Geosci. 37(8), 1136–1147 (2011)
159.
Zurück zum Zitat Eskilson, P., Claesson, J.: Simulation model for thermally interacting heat extraction boreholes. Numer. Heat Transf. 13(2), 149–165 (1988) Eskilson, P., Claesson, J.: Simulation model for thermally interacting heat extraction boreholes. Numer. Heat Transf. 13(2), 149–165 (1988)
234.
Zurück zum Zitat Heidemann, W.: Zur rechnerischen Ermittlung instationärer Temperaturfelder in geschlossener und diskreter Form (on computation of transient temperature fields in closed and discrete form). Ph.D. thesis, University of Stuttgart, Stuttgart, Germany (1995) Heidemann, W.: Zur rechnerischen Ermittlung instationärer Temperaturfelder in geschlossener und diskreter Form (on computation of transient temperature fields in closed and discrete form). Ph.D. thesis, University of Stuttgart, Stuttgart, Germany (1995)
294.
Zurück zum Zitat Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef
305.
Zurück zum Zitat Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)CrossRef Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)CrossRef
316.
Zurück zum Zitat Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein (flow, mass and heat transport in fractured rock). Gebr. Borntraeger, Berlin/Stuttgart (1997) Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein (flow, mass and heat transport in fractured rock). Gebr. Borntraeger, Berlin/Stuttgart (1997)
330.
Zurück zum Zitat Lamarche, L., Kajl, S., Beauchamp, B.: A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2), 187–200 (2010)CrossRef Lamarche, L., Kajl, S., Beauchamp, B.: A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2), 187–200 (2010)CrossRef
381.
Zurück zum Zitat Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946 Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946
391.
Zurück zum Zitat Nillert, P.: Beitrag zur Simulation von Brunnen als innere Randbedingungen in horizontalebenen diskreten Grundwasserströmungsmodellen (simulation of wells as inner boundary conditions for horizontal 2D discrete groundwater flow models). Ph.D. thesis, Technical University Dresden, Dresden, Germany (1976) Nillert, P.: Beitrag zur Simulation von Brunnen als innere Randbedingungen in horizontalebenen diskreten Grundwasserströmungsmodellen (simulation of wells as inner boundary conditions for horizontal 2D discrete groundwater flow models). Ph.D. thesis, Technical University Dresden, Dresden, Germany (1976)
467.
Zurück zum Zitat Schulz, R.: Analytical model calculations for heat exchange in a confined aquifer. J. Geophys. 61, 12–20 (1987) Schulz, R.: Analytical model calculations for heat exchange in a confined aquifer. J. Geophys. 61, 12–20 (1987)
477.
Zurück zum Zitat Signorelli, S., Bassetti, S., Pahud, D., Kohl, T.: Numerical evaluation of thermal response tests. Geothermics 36(2), 141–166 (2007)CrossRef Signorelli, S., Bassetti, S., Pahud, D., Kohl, T.: Numerical evaluation of thermal response tests. Geothermics 36(2), 141–166 (2007)CrossRef
510.
Zurück zum Zitat Teza, G., Galgaro, A., De Carli, M.: Long-term performance of an irregular shaped borehole heat exchanger system: analysis of real pattern and regular grid approximation. Geothermics 43, 45–56 (2012)CrossRef Teza, G., Galgaro, A., De Carli, M.: Long-term performance of an irregular shaped borehole heat exchanger system: analysis of real pattern and regular grid approximation. Geothermics 43, 45–56 (2012)CrossRef
577.
Zurück zum Zitat Yavuzturk, C., Spitler, J., Rees, S.: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans. 105(2), 465–474 (1999) Yavuzturk, C., Spitler, J., Rees, S.: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans. 105(2), 465–474 (1999)
590.
Zurück zum Zitat Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000) Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)
Metadaten
Titel
Heat Transport in Porous Media
verfasst von
Hans-Jörg G. Diersch
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38739-5_13