Skip to main content

2015 | OriginalPaper | Buchkapitel

Hierarchical Topology Optimization for Bone Tissue Scaffold: Preliminary Results on the Design of a Fracture Fixation Plate

verfasst von : Emily Gogarty, Damiano Pasini

Erschienen in: Engineering and Applied Sciences Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A porous material can be designed to promote tissue regeneration as well as satisfy mechanical and biological requirements. The porous microarchitecture can be specifically tailored to locally match the specific properties of the host tissue resulting in a biologically fixed implant. A 2D hierarchical topology optimization scheme is presented here to design a cellular scaffold that optimally reconciles bone resorption and permeability, two antagonist objectives of bone tissue scaffolds. The implant is tailored to reproduce the variable stiffness properties of the surrounding bone while maximizing its permeability for bone ingrowth. The procedure integrates multi-objective optimization with multi-scale topology optimization. In particular, the material layout is sequentially optimized at two length scales: (1) the property distribution varying throughout the implant body, and (2) the topology of each pore of the scaffold. In the first stage, an optimal material distribution is obtained to generate a stiffness match between implant and bone tissue. In the second stage, the optimal relative density distribution is used to interpolate target material properties at each location of the implant domain. Target matching topology optimization is used to obtain unit cells with desired stiffness and maximum permeability throughout the implant. The procedure currently developed in 2D can be extended to produce clinically relevant 3D implant models. As a case study, a 2D bone fracture fixation plate under in-plane load is optimized at both the implant and cellular material level. While the preliminary results presented here need further refinement, such as on the filtering method and the calculation of permeability, the paper contributes to the development of a method to design engineered scaffolds that are both mechanically optimal and conducive to bone tissue regeneration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sikavitsas VI, Temenoff JS, Mikos AG (Oct 2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593 Sikavitsas VI, Temenoff JS, Mikos AG (Oct 2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593
2.
Zurück zum Zitat van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, van den Beucken J et al (2008) Chapter 19—Tissue engineering of bone. In: van Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R et al (eds) Tissue engineering. Academic Press, Burlington, pp 559–610 van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, van den Beucken J et al (2008) Chapter 19—Tissue engineering of bone. In: van Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R et al (eds) Tissue engineering. Academic Press, Burlington, pp 559–610
3.
Zurück zum Zitat Lorna MFA, Gibson J (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge Lorna MFA, Gibson J (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524 Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524
6.
Zurück zum Zitat Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:36–623 Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:36–623
7.
Zurück zum Zitat Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRef Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRef
8.
Zurück zum Zitat Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342CrossRef Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342CrossRef
9.
Zurück zum Zitat Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B: Rev 17:459–474CrossRef Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B: Rev 17:459–474CrossRef
10.
Zurück zum Zitat Hollister SJ, Lin CY (2007) Computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 196:2991–2998CrossRefMATH Hollister SJ, Lin CY (2007) Computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 196:2991–2998CrossRefMATH
11.
Zurück zum Zitat Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103 Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103
12.
Zurück zum Zitat Khanoki SA, Pasini D (2013) The fatigue design of a bone preserving hip implant with functionally graded cellular material. Trans ASME J Med Devices 7:020908 Khanoki SA, Pasini D (2013) The fatigue design of a bone preserving hip implant with functionally graded cellular material. Trans ASME J Med Devices 7:020908
13.
Zurück zum Zitat Khanoki AS, Pasini D (2013) Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater 22:65–83CrossRef Khanoki AS, Pasini D (2013) Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater 22:65–83CrossRef
14.
Zurück zum Zitat Abad EMK, Khanoki SA, Pasini D (2013) Fatigue design of lattice materials via computational mechanics: application to lattices with smooth transitions in cell geometry. Int J Fatigue 47:126–136 Abad EMK, Khanoki SA, Pasini D (2013) Fatigue design of lattice materials via computational mechanics: application to lattices with smooth transitions in cell geometry. Int J Fatigue 47:126–136
15.
Zurück zum Zitat Khanoki SA, Pasini D (2011) Multiscale design and multiobjective optimization of orthopaedic cellular hip implants. In: International design engineering technical conferences and computers and information in engineering conference, IDETC/CIE 2011, 28–31 Aug 2011, vol 2011, pp 935–944 Khanoki SA, Pasini D (2011) Multiscale design and multiobjective optimization of orthopaedic cellular hip implants. In: International design engineering technical conferences and computers and information in engineering conference, IDETC/CIE 2011, 28–31 Aug 2011, vol 2011, pp 935–944
16.
Zurück zum Zitat Khanoki AS, Pasini D (2012) Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J Biomech Eng 134:031004 Khanoki AS, Pasini D (2012) Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J Biomech Eng 134:031004
17.
Zurück zum Zitat Abad EMK, Khanoki SA, Pasini D (2011) Shape design of periodic cellular materials under cyclic loading. In: ASME international design engineering technical conferences and computers and information in engineering conference, IDETC/CIE 2011, 28–31 Aug 2011. Washington, DC, United States, vol 2011, pp 945–954 Abad EMK, Khanoki SA, Pasini D (2011) Shape design of periodic cellular materials under cyclic loading. In: ASME international design engineering technical conferences and computers and information in engineering conference, IDETC/CIE 2011, 28–31 Aug 2011. Washington, DC, United States, vol 2011, pp 945–954
18.
Zurück zum Zitat Chen Y, Schellekens M, Zhou S, Cadman J, Li W, Appleyard R et al (2011) Design optimization of scaffold micostructures using wall shear stress criterion towards regulated flow-induced erosion. J Biomech Eng 133:081008 Chen Y, Schellekens M, Zhou S, Cadman J, Li W, Appleyard R et al (2011) Design optimization of scaffold micostructures using wall shear stress criterion towards regulated flow-induced erosion. J Biomech Eng 133:081008
19.
Zurück zum Zitat Knychala J, Bouropoulos N, Catt CJ, Katsamenis OL, Please CP, Sengers BG (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organisation. Ann Biomed Eng 41:917–930 Knychala J, Bouropoulos N, Catt CJ, Katsamenis OL, Please CP, Sengers BG (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organisation. Ann Biomed Eng 41:917–930
20.
Zurück zum Zitat Kang H, Lin C-Y, Hollister SJ (2010) Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip Optim 42:633–644CrossRef Kang H, Lin C-Y, Hollister SJ (2010) Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip Optim 42:633–644CrossRef
21.
Zurück zum Zitat Elsayed MSA, Pasini D (2010) Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials. Mech Mater 42:709–725CrossRef Elsayed MSA, Pasini D (2010) Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials. Mech Mater 42:709–725CrossRef
22.
Zurück zum Zitat Elsayed MSA, Pasini D (2009) Characterization and performance optimization of 2D lattice materials with hexagonal Bravais lattice symmetry. In: ASME international design engineering technical conferences and computers and information in engineering conference, DETC2009, 30 Aug–2 Sept 2009. San Diego, CA, United States, vol 2010, pp 1315–1323 Elsayed MSA, Pasini D (2009) Characterization and performance optimization of 2D lattice materials with hexagonal Bravais lattice symmetry. In: ASME international design engineering technical conferences and computers and information in engineering conference, DETC2009, 30 Aug–2 Sept 2009. San Diego, CA, United States, vol 2010, pp 1315–1323
23.
Zurück zum Zitat Elsayed MSA, Pasini D (2008) Multiscale model of the effective properties of the octet-truss lattice material. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, MAO, 10–12 Sept 2008, Victoria, BC, Canada Elsayed MSA, Pasini D (2008) Multiscale model of the effective properties of the octet-truss lattice material. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, MAO, 10–12 Sept 2008, Victoria, BC, Canada
24.
Zurück zum Zitat Elsayed MSA, Pasini D (2010) Multiscale structural design of columns made of regular octet-truss lattice material. Int J Solids Struct 47:1764–1774CrossRefMATH Elsayed MSA, Pasini D (2010) Multiscale structural design of columns made of regular octet-truss lattice material. Int J Solids Struct 47:1764–1774CrossRefMATH
25.
Zurück zum Zitat Elsayed MSA, Clement H, Pasini D (2009) Structural analysis of pin jointed lattice structures. In: 3rd international conference on advances and trends in engineering materials and their applications, AES-ATEMA’2009, 6–10 July 2009. Montreal, QC, Canada, pp 51–57 Elsayed MSA, Clement H, Pasini D (2009) Structural analysis of pin jointed lattice structures. In: 3rd international conference on advances and trends in engineering materials and their applications, AES-ATEMA’2009, 6–10 July 2009. Montreal, QC, Canada, pp 51–57
26.
Zurück zum Zitat Elsayed MSA, Pasini D (2010) Theoretical and experimental characterization of the 34.6 2D lattice material. In: ASME international design engineering technical conferences and computers and information in engineering conference, IDETC/CIE2010, 15–18 Aug 2010. Montreal, QC, Canada, vol 2010, pp 11–20 Elsayed MSA, Pasini D (2010) Theoretical and experimental characterization of the 34.6 2D lattice material. In: ASME international design engineering technical conferences and computers and information in engineering conference, IDETC/CIE2010, 15–18 Aug 2010. Montreal, QC, Canada, vol 2010, pp 11–20
27.
Zurück zum Zitat Vigliotti A, Pasini D (2012) Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mech Mater 46:57–68CrossRef Vigliotti A, Pasini D (2012) Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mech Mater 46:57–68CrossRef
28.
Zurück zum Zitat Vigliotti A, Deshpande VS, Pasini D (2014) Non linear constitutive models for lattice materials. J Mech Phys Solids 64:44–60CrossRefMathSciNet Vigliotti A, Deshpande VS, Pasini D (2014) Non linear constitutive models for lattice materials. J Mech Phys Solids 64:44–60CrossRefMathSciNet
29.
Zurück zum Zitat Vigliotti A, Pasini D (2012) Stiffness and strength of tridimensional periodic lattices. Comput Methods Appl Mech Eng 229–232:27–43CrossRef Vigliotti A, Pasini D (2012) Stiffness and strength of tridimensional periodic lattices. Comput Methods Appl Mech Eng 229–232:27–43CrossRef
30.
Zurück zum Zitat Arabnejad S, Pasini D (2013) Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci 77:249–262CrossRef Arabnejad S, Pasini D (2013) Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci 77:249–262CrossRef
31.
Zurück zum Zitat Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45:4130–4146CrossRefMATH Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45:4130–4146CrossRefMATH
32.
Zurück zum Zitat Gibson MFALJ, Harley BA (2010) Cellular materials in nature and medicine. Cambridge University Press, Cambridge Gibson MFALJ, Harley BA (2010) Cellular materials in nature and medicine. Cambridge University Press, Cambridge
33.
Zurück zum Zitat Vigliotti A, Pasini D (2013) Mechanical properties of hierarchical lattices. Mech Mater 62:32–43 Vigliotti A, Pasini D (2013) Mechanical properties of hierarchical lattices. Mech Mater 62:32–43
34.
Zurück zum Zitat Khanoki SA, Pasini D (2013) Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater 22:65–83 Khanoki SA, Pasini D (2013) Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater 22:65–83
35.
Zurück zum Zitat Guest JK, Prévost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43:7028–7047CrossRefMATH Guest JK, Prévost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43:7028–7047CrossRefMATH
36.
Zurück zum Zitat Challis VJ, Guest JK, Grotowski JF, Roberts AP (2012) Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int J Solids Struct 49:3397–3408CrossRef Challis VJ, Guest JK, Grotowski JF, Roberts AP (2012) Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int J Solids Struct 49:3397–3408CrossRef
37.
Zurück zum Zitat Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2007) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35:107–115CrossRef Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2007) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35:107–115CrossRef
38.
Zurück zum Zitat Chen Q, Huang S (2013) Mechanical properties of a porous bioscaffold with hierarchy. Mater Lett 95:89–92CrossRef Chen Q, Huang S (2013) Mechanical properties of a porous bioscaffold with hierarchy. Mater Lett 95:89–92CrossRef
39.
Zurück zum Zitat Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24:1–10CrossRef Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24:1–10CrossRef
40.
Zurück zum Zitat Fernandes PR, Coelho PG, Guedes JM, Rodrigues HC (2010) Hierarchical optimization of the structure and the material used in its manufacture. Mecánica Computacional XXIX:405–415 Fernandes PR, Coelho PG, Guedes JM, Rodrigues HC (2010) Hierarchical optimization of the structure and the material used in its manufacture. Mecánica Computacional XXIX:405–415
41.
Zurück zum Zitat Coelho ALV, Fernandes E, Faceli K (2011) Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming. Dec Support Syst 51:794–809CrossRef Coelho ALV, Fernandes E, Faceli K (2011) Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming. Dec Support Syst 51:794–809CrossRef
42.
Zurück zum Zitat Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation-a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42:830–837CrossRef Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation-a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42:830–837CrossRef
43.
Zurück zum Zitat Hassani B (1996) A direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Commun Numer Methods Eng 12:185–196CrossRefMATHMathSciNet Hassani B (1996) A direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Commun Numer Methods Eng 12:185–196CrossRefMATHMathSciNet
44.
Zurück zum Zitat Hollister SJ, Kikuchi N (1992) Comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 10:73–95CrossRefMATH Hollister SJ, Kikuchi N (1992) Comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 10:73–95CrossRefMATH
45.
Zurück zum Zitat Weissberg HL (1963) Effective diffusion coefficient in porous media. J Appl Phys 34:2636–2639CrossRef Weissberg HL (1963) Effective diffusion coefficient in porous media. J Appl Phys 34:2636–2639CrossRef
46.
Zurück zum Zitat Arce P, Locke BR, Trinh S (2000) Effective diffusivities of point-like molecules in isotropic porous media by Monte Carlo simulation. Transp Porous Media 38:241–259 Arce P, Locke BR, Trinh S (2000) Effective diffusivities of point-like molecules in isotropic porous media by Monte Carlo simulation. Transp Porous Media 38:241–259
47.
Zurück zum Zitat Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329CrossRefMATHMathSciNet Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329CrossRefMATHMathSciNet
48.
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin
49.
Zurück zum Zitat Suzuki K, Kikuchi N (1991) A homogenization method for shape and topologoy optimization. Comput Methods Appl Mech Eng 93:291–318 Suzuki K, Kikuchi N (1991) A homogenization method for shape and topologoy optimization. Comput Methods Appl Mech Eng 93:291–318
50.
Zurück zum Zitat Cowin SC (2007) The significance of bone microstructure in mechanotransduction. J Biomech 40(Suppl 1):S105–S109CrossRefMathSciNet Cowin SC (2007) The significance of bone microstructure in mechanotransduction. J Biomech 40(Suppl 1):S105–S109CrossRefMathSciNet
51.
Zurück zum Zitat Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108 Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108
52.
Zurück zum Zitat Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidiscip Optim 21:159–163CrossRef Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidiscip Optim 21:159–163CrossRef
53.
Zurück zum Zitat Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48:51–66CrossRef Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48:51–66CrossRef
54.
Zurück zum Zitat Zillober C (1993) A globally convergent version of the method of moving asymptotes. Struct Optim 6:166–174CrossRef Zillober C (1993) A globally convergent version of the method of moving asymptotes. Struct Optim 6:166–174CrossRef
55.
Zurück zum Zitat Tacvorian EK (2012) Evaluation of canine fracture fixation bone plates. Degree of Master of Science, Biomedical Engineering, Worchester Polytechnic Institute Tacvorian EK (2012) Evaluation of canine fracture fixation bone plates. Degree of Master of Science, Biomedical Engineering, Worchester Polytechnic Institute
57.
Zurück zum Zitat Fouad H (2010) Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys 32:783–789CrossRef Fouad H (2010) Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys 32:783–789CrossRef
58.
Zurück zum Zitat Ganesh VK, Ramakrishna K, Ghista D (2005) Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. BioMed Eng OnLine 4:1–15 Ganesh VK, Ramakrishna K, Ghista D (2005) Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. BioMed Eng OnLine 4:1–15
59.
Zurück zum Zitat Perren KKSM, Pohler O, Predieri M, Steinemann S, Gautier E (1990) The limited contact dynamic compression plate (LC-DCP). Arch Orthop Trauma Surg 109:304–310 Perren KKSM, Pohler O, Predieri M, Steinemann S, Gautier E (1990) The limited contact dynamic compression plate (LC-DCP). Arch Orthop Trauma Surg 109:304–310
60.
Zurück zum Zitat Synthes I (2002) Small fragment locking compression plate (LCP) system. In: Synthes D (ed) Stainless steel and titanium Synthes I (2002) Small fragment locking compression plate (LCP) system. In: Synthes D (ed) Stainless steel and titanium
61.
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246 Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246
62.
Zurück zum Zitat Sundararajan VG (2010) Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions. Engineering, The University of Texas at Austin, Master of Science in Engineering Sundararajan VG (2010) Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions. Engineering, The University of Texas at Austin, Master of Science in Engineering
Metadaten
Titel
Hierarchical Topology Optimization for Bone Tissue Scaffold: Preliminary Results on the Design of a Fracture Fixation Plate
verfasst von
Emily Gogarty
Damiano Pasini
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-18320-6_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.