Skip to main content
Erschienen in: Colloid and Polymer Science 2/2009

01.02.2009 | Short Communication

Hierarchies in the structural organization of spider silk—a quantitative model

verfasst von: Periklis Papadopoulos, Jan Sölter, Friedrich Kremer

Erschienen in: Colloid and Polymer Science | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The unsurpassed mechanical properties of major ampullate spider silk are quantitatively explained by a hierarchical model of its structural organization. Based on combined time-resolved mechanical and Fourier-transform infrared measurements, we show that the core of native silk fibers is strongly prestressed. The prestress is released during wetting, allowing the fibers to shrink, changing permanently the mechanical properties. Prestress is, therefore, the controlling parameter of silk properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kubik S (2002) High-performance fibers from spider silk. Angew Chem Int Ed 41:2721–2723CrossRef Kubik S (2002) High-performance fibers from spider silk. Angew Chem Int Ed 41:2721–2723CrossRef
2.
Zurück zum Zitat Holland C, Terry AE, Porter D et al (2007) Natural and unnatural silks. Polymer 48:3388–3392CrossRef Holland C, Terry AE, Porter D et al (2007) Natural and unnatural silks. Polymer 48:3388–3392CrossRef
3.
Zurück zum Zitat Seidel A, Liivak O, Calve S et al (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–780CrossRef Seidel A, Liivak O, Calve S et al (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–780CrossRef
4.
Zurück zum Zitat Swanson BO, Blackledge AA, Beltran J et al (2006) Variation in the material properties of spider dragline silk across species. Appl Phys A 82:213–218CrossRef Swanson BO, Blackledge AA, Beltran J et al (2006) Variation in the material properties of spider dragline silk across species. Appl Phys A 82:213–218CrossRef
5.
Zurück zum Zitat Porter D, Vollrath F, Shao Z (2005) Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur Phys J E 16:199–206CrossRef Porter D, Vollrath F, Shao Z (2005) Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur Phys J E 16:199–206CrossRef
6.
Zurück zum Zitat Thiel BL, Guess KB, Viney C (1997) Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41:703–719CrossRef Thiel BL, Guess KB, Viney C (1997) Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41:703–719CrossRef
7.
Zurück zum Zitat Glišović A, Thieme J, Guttmann P et al (2007) Transmission X-ray microscopy of spider dragline silk. Int J Biol Macromol 40:87–95CrossRef Glišović A, Thieme J, Guttmann P et al (2007) Transmission X-ray microscopy of spider dragline silk. Int J Biol Macromol 40:87–95CrossRef
8.
Zurück zum Zitat Glišović A, Vehoff T, Davies RJ et al (2008) Strain dependent structural changes of spider dragline silk. Macromolecules 41:390–398CrossRef Glišović A, Vehoff T, Davies RJ et al (2008) Strain dependent structural changes of spider dragline silk. Macromolecules 41:390–398CrossRef
9.
Zurück zum Zitat Grubb DT, Jelinski LW (1997) Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30:2860–2867CrossRef Grubb DT, Jelinski LW (1997) Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30:2860–2867CrossRef
10.
Zurück zum Zitat Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210CrossRef Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210CrossRef
11.
Zurück zum Zitat Parkhe AD, Seeley SK, Gardner K et al (1997) Structural studies of spider silk proteins in the fiber. J Mol Recognit 10:1–6CrossRef Parkhe AD, Seeley SK, Gardner K et al (1997) Structural studies of spider silk proteins in the fiber. J Mol Recognit 10:1–6CrossRef
12.
Zurück zum Zitat Yang Z, Grubb DT, Jelinski LW (1997) Small-angle X-ray scattering of spider dragline silk. Macromolecules 30:8524–8261CrossRef Yang Z, Grubb DT, Jelinski LW (1997) Small-angle X-ray scattering of spider dragline silk. Macromolecules 30:8524–8261CrossRef
13.
Zurück zum Zitat Simmons A, Ray E, Jelinski LW (1994) Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237CrossRef Simmons A, Ray E, Jelinski LW (1994) Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237CrossRef
14.
Zurück zum Zitat van Beek JD, Hess S, Vollrath F et al (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci USA 99:10266–10271CrossRef van Beek JD, Hess S, Vollrath F et al (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci USA 99:10266–10271CrossRef
15.
Zurück zum Zitat Yang M, Asakura T (2005) Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J Biochem 137:721–729CrossRef Yang M, Asakura T (2005) Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J Biochem 137:721–729CrossRef
16.
Zurück zum Zitat Bramanti E, Catalano D, Forte C et al (2005) Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders. Spectrochim Acta A 62:105–111CrossRef Bramanti E, Catalano D, Forte C et al (2005) Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders. Spectrochim Acta A 62:105–111CrossRef
17.
Zurück zum Zitat Dong Z, Lewis RV, Middaugh CR (1991) Molecular mechanism of spider silk elasticity. Arch Biochem Biophys 284:53–57CrossRef Dong Z, Lewis RV, Middaugh CR (1991) Molecular mechanism of spider silk elasticity. Arch Biochem Biophys 284:53–57CrossRef
18.
Zurück zum Zitat Rousseau ME, Lefèvre T, Beaulieu L et al (2004) Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5:2247–2257CrossRef Rousseau ME, Lefèvre T, Beaulieu L et al (2004) Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5:2247–2257CrossRef
19.
Zurück zum Zitat Sirichaisit J, Brookes VL, Young RJ et al (2003) Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4:387–394CrossRef Sirichaisit J, Brookes VL, Young RJ et al (2003) Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4:387–394CrossRef
20.
Zurück zum Zitat Shao J, Zheng J, Liu J et al (2005) Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. J Appl Polym Sci 96:1999–2004CrossRef Shao J, Zheng J, Liu J et al (2005) Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. J Appl Polym Sci 96:1999–2004CrossRef
21.
Zurück zum Zitat Krasnov I, Diddens I, Hauptmann N et al (2008) Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys Rev Lett 100:048104CrossRef Krasnov I, Diddens I, Hauptmann N et al (2008) Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys Rev Lett 100:048104CrossRef
22.
Zurück zum Zitat Gosline JM, Denny MW, Demont ME (1984) Spider silk as rubber. Nature 309:551–552CrossRef Gosline JM, Denny MW, Demont ME (1984) Spider silk as rubber. Nature 309:551–552CrossRef
23.
Zurück zum Zitat O’Brien JP, Fahnestock SR, Yves T et al (1998) Nylons from nature: synthetic analogs to spider silk. Adv Mater 10:1185–1195CrossRef O’Brien JP, Fahnestock SR, Yves T et al (1998) Nylons from nature: synthetic analogs to spider silk. Adv Mater 10:1185–1195CrossRef
24.
Zurück zum Zitat Rousseau M-E, Cruz DH, West MM et al (2007) Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J Am Chem Soc 129:3897–3905CrossRef Rousseau M-E, Cruz DH, West MM et al (2007) Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J Am Chem Soc 129:3897–3905CrossRef
25.
Zurück zum Zitat Sapede D, Seydel T, Forsyth VT et al (2005) Nanofibrillar structure and molecular mobility in spider dragline silk. Macromolecules 38:8447–8453CrossRef Sapede D, Seydel T, Forsyth VT et al (2005) Nanofibrillar structure and molecular mobility in spider dragline silk. Macromolecules 38:8447–8453CrossRef
26.
Zurück zum Zitat Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A 82:205–212CrossRef Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A 82:205–212CrossRef
27.
Zurück zum Zitat Liu Y, Shao Z, Vollrath F (2005) Relationships between supercontraction and mechanical properties of spider silk. Nature Mater 4:901–906CrossRef Liu Y, Shao Z, Vollrath F (2005) Relationships between supercontraction and mechanical properties of spider silk. Nature Mater 4:901–906CrossRef
28.
Zurück zum Zitat Guinea GV, Elices M, Pérez-Rigueiro J et al (2004) Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. J Exp Biol 208:25–30CrossRef Guinea GV, Elices M, Pérez-Rigueiro J et al (2004) Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. J Exp Biol 208:25–30CrossRef
29.
Zurück zum Zitat Zhou H, Zhang Y (2005) Hierarchical chain model of spider capture silk elasticity. Phys Rev Lett 94:028104CrossRef Zhou H, Zhang Y (2005) Hierarchical chain model of spider capture silk elasticity. Phys Rev Lett 94:028104CrossRef
30.
Zurück zum Zitat Papadopoulos P, Sölter J, Kremer F (2007) Structure–property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. Eur Phys J E 24:193–199CrossRef Papadopoulos P, Sölter J, Kremer F (2007) Structure–property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. Eur Phys J E 24:193–199CrossRef
31.
Zurück zum Zitat Kratky O, Porod G (1949) Röntgenuntersuchung gelöster fadenmoleküle. Recl Trav Chim Pays Bas 68:1106–1123 Kratky O, Porod G (1949) Röntgenuntersuchung gelöster fadenmoleküle. Recl Trav Chim Pays Bas 68:1106–1123
32.
Zurück zum Zitat Eles PT, Michal CA (2004) A decoder NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate. Biomacromolecules 5:661–665CrossRef Eles PT, Michal CA (2004) A decoder NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate. Biomacromolecules 5:661–665CrossRef
33.
Zurück zum Zitat Lefèvre T, Rousseau M-E, Pézolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895CrossRef Lefèvre T, Rousseau M-E, Pézolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895CrossRef
34.
Zurück zum Zitat Sponner A, Vater W, Monajembashi S et al (2007) Composition and hierarchical organisation of a spider silk. PLoS ONE 2:e998CrossRef Sponner A, Vater W, Monajembashi S et al (2007) Composition and hierarchical organisation of a spider silk. PLoS ONE 2:e998CrossRef
35.
Zurück zum Zitat Oroudjev E, Soares J, Arcidiacono S et al (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA 99:6460–6465CrossRef Oroudjev E, Soares J, Arcidiacono S et al (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA 99:6460–6465CrossRef
36.
Zurück zum Zitat Gosline JM, Guerette PA, Ortlepp CS et al (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303 Gosline JM, Guerette PA, Ortlepp CS et al (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303
37.
Zurück zum Zitat Plaza GR, Guinea GV, Pérez-Rigueiro J et al (2006) Thermo-hygro-mechanical behavior of spider dragline silk: glassy and rubbery states. J Polym Sci B Polym Phys 44:994–999CrossRef Plaza GR, Guinea GV, Pérez-Rigueiro J et al (2006) Thermo-hygro-mechanical behavior of spider dragline silk: glassy and rubbery states. J Polym Sci B Polym Phys 44:994–999CrossRef
38.
Zurück zum Zitat Vehoff T, Glišović A, Schollmeyer H et al (2007) Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. Biophys J 93:4425–4432CrossRef Vehoff T, Glišović A, Schollmeyer H et al (2007) Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. Biophys J 93:4425–4432CrossRef
Metadaten
Titel
Hierarchies in the structural organization of spider silk—a quantitative model
verfasst von
Periklis Papadopoulos
Jan Sölter
Friedrich Kremer
Publikationsdatum
01.02.2009
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 2/2009
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-008-1968-x

Weitere Artikel der Ausgabe 2/2009

Colloid and Polymer Science 2/2009 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.