Skip to main content
Erschienen in: Glass and Ceramics 5-6/2022

21.10.2022

High Capability of the Buffering Agent in Providing Constant pH to Improve the Behaviour of Synthesized HA/b-TCP Ceramic

verfasst von: Masoud Moradjoy, Hamid Khorsand

Erschienen in: Glass and Ceramics | Ausgabe 5-6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the synthesis of different calcium phosphate phases, the pH variation of the slurry solution affects the purity, structure, and chemical composition of final products. High-capacity buffering agent solutions were used to keep the pH value constant during the synthesis procedure. Consequently, high purity and single-phase HA, b-TCP. Also, morphological evaluation of granules from plate-like to completely porous structure is another result of keeping the slurry pH constant during the synthesis step. Increasing the specific surface area of BCP granules from 10 to 38 m2/g affected the in vitro behaviour of the products. Precipitation of 20 nm hydroxyapatite phase after suspension of experimental samples for 30 days in simulation body fluid attributed to using Tris buffer solution during synthesis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. B.-Z. Auniq, N. Pakasri, and U. Boonyang, “Synthesis and in vitro bioactivity of three-dimensionally ordered macroporous-mesoporous bioactive glasses; 45S5 and S53P4,” J. Korean Ceram. Soc., 57(3), 305 – 313 (2020).CrossRef R. B.-Z. Auniq, N. Pakasri, and U. Boonyang, “Synthesis and in vitro bioactivity of three-dimensionally ordered macroporous-mesoporous bioactive glasses; 45S5 and S53P4,” J. Korean Ceram. Soc., 57(3), 305 – 313 (2020).CrossRef
2.
Zurück zum Zitat S. Batool, U. Liaqat, B. Babar, et al., “Bone whitlockite: synthesis, applications, and future prospects,” J. Korean Ceram. Soc., 1 – 18 (2021). S. Batool, U. Liaqat, B. Babar, et al., “Bone whitlockite: synthesis, applications, and future prospects,” J. Korean Ceram. Soc., 1 – 18 (2021).
3.
Zurück zum Zitat J.-S. Ha and C.-S. Kim, “Processing of porous ceramics with a cellular structure using polymer beads,” J. Korean Ceram. Soc., 40(12), 1159 – 1164 (2003).CrossRef J.-S. Ha and C.-S. Kim, “Processing of porous ceramics with a cellular structure using polymer beads,” J. Korean Ceram. Soc., 40(12), 1159 – 1164 (2003).CrossRef
4.
Zurück zum Zitat S.-C. Wu, H.-C. Hsu, M.-Y. Liu, et al., “Characterization of nanosized hydroxyapatite prepared by an aqueous precipitation method using eggshells and mulberry leaf extract,” J. Korean Ceram. Soc., 58(1), 116 – 122 (2021).CrossRef S.-C. Wu, H.-C. Hsu, M.-Y. Liu, et al., “Characterization of nanosized hydroxyapatite prepared by an aqueous precipitation method using eggshells and mulberry leaf extract,” J. Korean Ceram. Soc., 58(1), 116 – 122 (2021).CrossRef
5.
Zurück zum Zitat S. A. Nosrati, R. Alizadeh, S. J. Ahmadi, et al., “Optimized precipitation process for efficient and size-controlled synthesis of hydroxyapatite–chitosan nanocomposite,” J. Korean Ceram. Soc., 57(6), 632 – 644 (2020).CrossRef S. A. Nosrati, R. Alizadeh, S. J. Ahmadi, et al., “Optimized precipitation process for efficient and size-controlled synthesis of hydroxyapatite–chitosan nanocomposite,” J. Korean Ceram. Soc., 57(6), 632 – 644 (2020).CrossRef
6.
Zurück zum Zitat L. Sukhodub, L. Sukhodub, A. Pogrebnjak, et al., “Effect of magnetic particles adding into nanostructured hydroxyapatite–alginate composites for orthopedics,” J. Korean Ceram. Soc., 57(5), 557 – 569 (2020).CrossRef L. Sukhodub, L. Sukhodub, A. Pogrebnjak, et al., “Effect of magnetic particles adding into nanostructured hydroxyapatite–alginate composites for orthopedics,” J. Korean Ceram. Soc., 57(5), 557 – 569 (2020).CrossRef
7.
Zurück zum Zitat L. Lu, B. L. Currier, and M. J. Yaszemski, “Synthetic bone substitutes,” Curr. Opin. Orthop., 11(5), 383 – 390 (2000).CrossRef L. Lu, B. L. Currier, and M. J. Yaszemski, “Synthetic bone substitutes,” Curr. Opin. Orthop., 11(5), 383 – 390 (2000).CrossRef
8.
Zurück zum Zitat A. Lucas, J. Gaudé, C. Carel, et al., “A synthetic aragonitebased ceramic as a bone graft substitute and substrate for antibiotics,” Int. J. Inorg. Mater., 3(1), 87 – 94 (2001).CrossRef A. Lucas, J. Gaudé, C. Carel, et al., “A synthetic aragonitebased ceramic as a bone graft substitute and substrate for antibiotics,” Int. J. Inorg. Mater., 3(1), 87 – 94 (2001).CrossRef
9.
Zurück zum Zitat W.-S. Tak, D.-J. Kim, and S.-C. Ryu, “Preparation and properties of hydroxyapatite/methylcellulose for bone graft,” J. Korean Ceram. Soc., 55(2), 145 – 152 (2018).CrossRef W.-S. Tak, D.-J. Kim, and S.-C. Ryu, “Preparation and properties of hydroxyapatite/methylcellulose for bone graft,” J. Korean Ceram. Soc., 55(2), 145 – 152 (2018).CrossRef
10.
Zurück zum Zitat M. Bohner, B. L. G. Santoni, and N. Döbelin, “β-tricalcium phosphate for bone substitution: Synthesis and properties,” Acta Biomater., 113, 23 – 41 (2020).CrossRef M. Bohner, B. L. G. Santoni, and N. Döbelin, “β-tricalcium phosphate for bone substitution: Synthesis and properties,” Acta Biomater., 113, 23 – 41 (2020).CrossRef
11.
Zurück zum Zitat S. Dutta, D. Passi, P. Singh, et al., “Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review,” Ir. J. Med. Sci., 184(1), 101 – 106 (2015).CrossRef S. Dutta, D. Passi, P. Singh, et al., “Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review,” Ir. J. Med. Sci., 184(1), 101 – 106 (2015).CrossRef
12.
Zurück zum Zitat A. Farzadi, M. Solati-Hashjin, F. Bakhshi, et al., “Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation,” Ceram Int., 37(1), 65 – 71 (2011).CrossRef A. Farzadi, M. Solati-Hashjin, F. Bakhshi, et al., “Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation,” Ceram Int., 37(1), 65 – 71 (2011).CrossRef
13.
Zurück zum Zitat J. Delécrin, S. Takahashi, F. Gouin, et al., “A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study,” Spine, 25(5), 563 – 569 (2000).CrossRef J. Delécrin, S. Takahashi, F. Gouin, et al., “A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study,” Spine, 25(5), 563 – 569 (2000).CrossRef
14.
Zurück zum Zitat W. R. Moore, S. E. Graves, and G. I. Bain, “Synthetic bone graft substitutes,” ANZ J. Surg., 71(6), 354 – 361 (2001).CrossRef W. R. Moore, S. E. Graves, and G. I. Bain, “Synthetic bone graft substitutes,” ANZ J. Surg., 71(6), 354 – 361 (2001).CrossRef
15.
Zurück zum Zitat T. W. Bauer and G. F. Muschler “Bone graft materials: an overview of the basic science,” Clin. Orthop. Relat. Res., 371, 10 – 27 (2000).CrossRef T. W. Bauer and G. F. Muschler “Bone graft materials: an overview of the basic science,” Clin. Orthop. Relat. Res., 371, 10 – 27 (2000).CrossRef
16.
Zurück zum Zitat S. Impens, R. Schelstraete, J. Luyten, et al., “Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/β-tricalcium phosphate ratios,” Adv. Appl. Ceram., 108(8), 494 – 500 (2013).CrossRef S. Impens, R. Schelstraete, J. Luyten, et al., “Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/β-tricalcium phosphate ratios,” Adv. Appl. Ceram., 108(8), 494 – 500 (2013).CrossRef
17.
Zurück zum Zitat M. Descamps, J. C. Hornez, and A. Leriche, “Effects of powder stoichiometry on the sintering of β-tricalcium phosphate,” J. Eur. Ceram. Soc., 27(6), 2401 – 2406 (2007).CrossRef M. Descamps, J. C. Hornez, and A. Leriche, “Effects of powder stoichiometry on the sintering of β-tricalcium phosphate,” J. Eur. Ceram. Soc., 27(6), 2401 – 2406 (2007).CrossRef
18.
Zurück zum Zitat J.-S. Bow, S.-C. Liou, and S.-Y. Chen, “Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate,” Biomaterials, 25(16), 3155 – 3161 (2004).CrossRef J.-S. Bow, S.-C. Liou, and S.-Y. Chen, “Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate,” Biomaterials, 25(16), 3155 – 3161 (2004).CrossRef
19.
Zurück zum Zitat M. Descamps, O. Richart, P. Hardouin, et al., “Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural,” Ceram Int., 34(5), 1131 – 1137 (2008).CrossRef M. Descamps, O. Richart, P. Hardouin, et al., “Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural,” Ceram Int., 34(5), 1131 – 1137 (2008).CrossRef
20.
Zurück zum Zitat Y.-H. Kim, A. Jyoti, I.-S. Byun, et al., “Effects of macrophage on biodegradation of β-tricalcium phosphate bone graft substitute,” J. Korean Ceram. Soc., 45(10), 618 – 624 (2008).CrossRef Y.-H. Kim, A. Jyoti, I.-S. Byun, et al., “Effects of macrophage on biodegradation of β-tricalcium phosphate bone graft substitute,” J. Korean Ceram. Soc., 45(10), 618 – 624 (2008).CrossRef
21.
Zurück zum Zitat P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury, 36(3), S20 – S27 (2005).CrossRef P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury, 36(3), S20 – S27 (2005).CrossRef
22.
Zurück zum Zitat R. S. Valtanen, Y. P. Yang, G. C. Gurtner, et al., “Synthetic bone tissue engineering graft substitutes: What is the future?” Injury, 52(4), 72 – 77 (2020). R. S. Valtanen, Y. P. Yang, G. C. Gurtner, et al., “Synthetic bone tissue engineering graft substitutes: What is the future?” Injury, 52(4), 72 – 77 (2020).
23.
Zurück zum Zitat C. Zou, W. Weng, X. Deng, et al., “Preparation and characterization of porous-tricalcium phosphate/collagen composites with an integrated structure,” Biomaterials, 26(26), 5276 – 5284 (2005).CrossRef C. Zou, W. Weng, X. Deng, et al., “Preparation and characterization of porous-tricalcium phosphate/collagen composites with an integrated structure,” Biomaterials, 26(26), 5276 – 5284 (2005).CrossRef
24.
Zurück zum Zitat S. Gallinetti, C. Canal, M. P. Ginebra, et al., “Development and characterization of biphasic hydroxyapatite/β-TCP cements,” J. Am. Ceram. Soc., 97(4), 1065 – 1073 (2014).CrossRef S. Gallinetti, C. Canal, M. P. Ginebra, et al., “Development and characterization of biphasic hydroxyapatite/β-TCP cements,” J. Am. Ceram. Soc., 97(4), 1065 – 1073 (2014).CrossRef
25.
Zurück zum Zitat O. Mekmene, S. Quillard, T. Rouillon, et al., “Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions,” Dairy Sci. Technol., 89(3–4), 301 – 316 (2009).CrossRef O. Mekmene, S. Quillard, T. Rouillon, et al., “Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions,” Dairy Sci. Technol., 89(3–4), 301 – 316 (2009).CrossRef
26.
Zurück zum Zitat T. Ito and M. Otsuka, “Application of calcium phosphate as a controlled-release device,” Biol. Pharm. Bull., 36(11), 1676 – 1682 (2013).CrossRef T. Ito and M. Otsuka, “Application of calcium phosphate as a controlled-release device,” Biol. Pharm. Bull., 36(11), 1676 – 1682 (2013).CrossRef
27.
Zurück zum Zitat M. Khanijou, R. Zhang, K. Boonsiriseth, et al., “Physicochemical and osteogenic properties of chairside processed tooth derived bone substitute and bone graft materials,” Dent. Mater. J. Adv. Pub., 40(1), 173 – 183 (2020).CrossRef M. Khanijou, R. Zhang, K. Boonsiriseth, et al., “Physicochemical and osteogenic properties of chairside processed tooth derived bone substitute and bone graft materials,” Dent. Mater. J. Adv. Pub., 40(1), 173 – 183 (2020).CrossRef
28.
Zurück zum Zitat S. M. Rush “Bone graft substitutes: osteobiologics,” Clin. Podiatr. Med. Surg., 22(4), 619 – 630 (2005).CrossRef S. M. Rush “Bone graft substitutes: osteobiologics,” Clin. Podiatr. Med. Surg., 22(4), 619 – 630 (2005).CrossRef
29.
Zurück zum Zitat Y. Fillingham and J. Jacobs, “Bone grafts and their substitutes,” Bone Jt. J., 98 (1 Supple A), 6 – 9 (2016).CrossRef Y. Fillingham and J. Jacobs, “Bone grafts and their substitutes,” Bone Jt. J., 98 (1 Supple A), 6 – 9 (2016).CrossRef
30.
Zurück zum Zitat K. A. Al Ruhaimi, “Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials,” Int. J. Oral Maxillofac Implants, 16(1) (2001). K. A. Al Ruhaimi, “Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials,” Int. J. Oral Maxillofac Implants, 16(1) (2001).
31.
Zurück zum Zitat S. N. Parikh, “Bone graft substitutes in modern orthopedics,” Orthopedics, 25(11), 1301 – 1309 (2002).CrossRef S. N. Parikh, “Bone graft substitutes in modern orthopedics,” Orthopedics, 25(11), 1301 – 1309 (2002).CrossRef
32.
Zurück zum Zitat K. A. Hing, “Bioceramic bone graft substitutes: influence of porosity and chemistry,” Int. J. Appl. Ceram. Technol., 2(3), 184 – 199 (2005).CrossRef K. A. Hing, “Bioceramic bone graft substitutes: influence of porosity and chemistry,” Int. J. Appl. Ceram. Technol., 2(3), 184 – 199 (2005).CrossRef
33.
Zurück zum Zitat T. Blokhuis and J. C. Arts, “Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths,” Injury, 42, Suppl., S26 – S29 (2011). T. Blokhuis and J. C. Arts, “Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths,” Injury, 42, Suppl., S26 – S29 (2011).
34.
Zurück zum Zitat M. Bohner, L. Galea, and N. Doebelin, “Calcium phosphate bone graft substitutes: Failures and hopes,” J. Eur. Ceram. Soc., 32(11), 2663 – 2671 (2012).CrossRef M. Bohner, L. Galea, and N. Doebelin, “Calcium phosphate bone graft substitutes: Failures and hopes,” J. Eur. Ceram. Soc., 32(11), 2663 – 2671 (2012).CrossRef
35.
Zurück zum Zitat V. B. Rosen, L. Hobbs, and M. Spector, “The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials,” Biomaterials, 23(3), 921 – 928 (2002).CrossRef V. B. Rosen, L. Hobbs, and M. Spector, “The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials,” Biomaterials, 23(3), 921 – 928 (2002).CrossRef
36.
Zurück zum Zitat B. Mohapatra and T. R. Rautray, “Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications,” J. Korean Ceram. Soc., 57(4), 392 – 400 (2020).CrossRef B. Mohapatra and T. R. Rautray, “Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications,” J. Korean Ceram. Soc., 57(4), 392 – 400 (2020).CrossRef
37.
Zurück zum Zitat A. R. Vaccaro, “The role of the osteoconductive scaffold in synthetic bone graft,” Orthopedics, 25(5), S571 – S578 (2002).CrossRef A. R. Vaccaro, “The role of the osteoconductive scaffold in synthetic bone graft,” Orthopedics, 25(5), S571 – S578 (2002).CrossRef
38.
Zurück zum Zitat S. Nandi, S. Roy, P. Mukherjee, et al., “Orthopaedic applications of bone graft & graft substitutes: a review,” Indian J. Med. Res., 132(1), 15 – 30 (2010). S. Nandi, S. Roy, P. Mukherjee, et al., “Orthopaedic applications of bone graft & graft substitutes: a review,” Indian J. Med. Res., 132(1), 15 – 30 (2010).
39.
Zurück zum Zitat W. Hettwer, P. F. Horstmann, S. Hettwer, et al., “Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur,” APMIS, 127(2), 53 – 63 (2019).CrossRef W. Hettwer, P. F. Horstmann, S. Hettwer, et al., “Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur,” APMIS, 127(2), 53 – 63 (2019).CrossRef
40.
Zurück zum Zitat H. Shen, Y. Zhi, F. Zhu, et al., “Experimental and clinical evaluation of BMP2-CPC graft versus deproteinized bovine bone graft for guided bone regeneration: A pilot study,” Dent. Mater. J., 40(1), 191 – 201 (2020).CrossRef H. Shen, Y. Zhi, F. Zhu, et al., “Experimental and clinical evaluation of BMP2-CPC graft versus deproteinized bovine bone graft for guided bone regeneration: A pilot study,” Dent. Mater. J., 40(1), 191 – 201 (2020).CrossRef
Metadaten
Titel
High Capability of the Buffering Agent in Providing Constant pH to Improve the Behaviour of Synthesized HA/b-TCP Ceramic
verfasst von
Masoud Moradjoy
Hamid Khorsand
Publikationsdatum
21.10.2022
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 5-6/2022
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-022-00492-3

Weitere Artikel der Ausgabe 5-6/2022

Glass and Ceramics 5-6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.