Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2021

04.01.2021

High-capacity CVD-grown Ge nanowire anodes for lithium-ion batteries: simple chemical etching approach for oxide removal

verfasst von: Pangil Kim, Tao Chen, Seunghyun Song, Wipakorn Jevasuwan, Churl Seung Lee, Naoki Fukata, Joonho Bae

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We demonstrated high-performance Ge nanowire (NWs) anodes for rechargeable lithium-ion batteries with high-capacity and high coulombic efficiency. The NWs were prepared using a simple chemical vapor deposition (CVD) method, which is favorable for the mass production of electrodes. The unstable oxides of Ge deteriorate the electrochemical characteristics of the batteries made from Ge-based anodes. To resolve the issue of the oxides and enhance the electrochemical performance, the oxides of the NWs were removed efficiently by a simple wet chemical etching method via a 10% HCl (aq) treatment. Transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental mapping verified the removal of oxides. Charge and discharge capacity of the pristine NWs were 833.803 mAhg−1 and 650.63 mAhg−1 at first cycle. In comparison, the charge and discharge capacities after oxide removal were 1064.1 mAhg−1 and 905.6 mAhg−1 under the same conditions. The discharge capacity and coulombic efficiency of the oxide-removed NWs were 39.2% and 7.1% higher than those achieved without oxide removal. The coulombic efficiency of the oxide-removed NWs was higher than that of the pristine NWs (7.1% increase). The NWs were stable over 25 cycles at different C-rates. This approach provides an efficient and practical way to resolve the oxide issue of Ge-based anodes, and high-performance lithium-ion batteries were demonstrated using the oxide-removed NW anodes. This study presents an advance towards the realization of the commercial batteries based on Ge as an active electrode material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.M. Tarascon, M. Armand, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Nature 414(6861), 359 (2001)CrossRef J.M. Tarascon, M. Armand, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Nature 414(6861), 359 (2001)CrossRef
2.
Zurück zum Zitat E. Tadhg Kennedy, H. Mullane, M. Geaney, O.’Dwyer Osiak, Colm, K.M. Ryan, High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett. 14, 716–723 (2014)CrossRef E. Tadhg Kennedy, H. Mullane, M. Geaney, O.’Dwyer Osiak, Colm, K.M. Ryan, High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett. 14, 716–723 (2014)CrossRef
3.
Zurück zum Zitat M. Aaron, K.C. Chockla, C. Klavetter, B. Mullins, B.A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4658–4664 (2012)CrossRef M. Aaron, K.C. Chockla, C. Klavetter, B. Mullins, B.A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4658–4664 (2012)CrossRef
4.
Zurück zum Zitat K. Stokes, G. Flynn, H. Geaney, G. Bree, K.M. Ryan, Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett. 18, 5569–5575 (2018)CrossRef K. Stokes, G. Flynn, H. Geaney, G. Bree, K.M. Ryan, Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett. 18, 5569–5575 (2018)CrossRef
5.
Zurück zum Zitat R.A. Susantyoko, X. Wang, L. Sun, K.L. Pey, E. Fitzgerald, Q. Zhang, Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon 77, 551–559 (2014)CrossRef R.A. Susantyoko, X. Wang, L. Sun, K.L. Pey, E. Fitzgerald, Q. Zhang, Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon 77, 551–559 (2014)CrossRef
6.
Zurück zum Zitat C.K. Chan, X.F. Chan, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008)CrossRef C.K. Chan, X.F. Chan, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008)CrossRef
7.
Zurück zum Zitat M.H. Park, K. Kim, J. Kim, J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Adv. Mater. 3, 415–418 (2010)CrossRef M.H. Park, K. Kim, J. Kim, J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Adv. Mater. 3, 415–418 (2010)CrossRef
8.
Zurück zum Zitat H. Lee, M.G. Kim, C.H. Choi, Y.K. Sun, C.S. Yoon, J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. 44, 20719–20723 (2005)CrossRef H. Lee, M.G. Kim, C.H. Choi, Y.K. Sun, C.S. Yoon, J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. 44, 20719–20723 (2005)CrossRef
9.
Zurück zum Zitat S. Ling, Z. Cui, G. She, X. Guo, L. Mu, W. Shi, A novel type of Ge nanotube arrays for lithium storage material. J. Nanosci. Nanotechnol. 12, 213–217 (2012)CrossRef S. Ling, Z. Cui, G. She, X. Guo, L. Mu, W. Shi, A novel type of Ge nanotube arrays for lithium storage material. J. Nanosci. Nanotechnol. 12, 213–217 (2012)CrossRef
10.
Zurück zum Zitat M.H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 41, 9647–9650 (2011)CrossRef M.H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 41, 9647–9650 (2011)CrossRef
11.
Zurück zum Zitat M.-H. Seo, M. Park, K.T. Lee, K. Kim, J. Kimb, J. Cho, High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 4, 425–428 (2011)CrossRef M.-H. Seo, M. Park, K.T. Lee, K. Kim, J. Kimb, J. Cho, High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 4, 425–428 (2011)CrossRef
12.
Zurück zum Zitat W. Li, M. Li, Z. Yang, J. Xu, X. Zhong, J. Wang, L. Zeng, X. Liu, Yu Jiang, X. Wei, Lin Gu, and Y. Yu, Carbon-coated germanium nanowires on carbon nanofibers as self‐supported electrodes for flexible lithium‐ion batteries. Small 11, 2762–2767 (2015)CrossRef W. Li, M. Li, Z. Yang, J. Xu, X. Zhong, J. Wang, L. Zeng, X. Liu, Yu Jiang, X. Wei, Lin Gu, and Y. Yu, Carbon-coated germanium nanowires on carbon nanofibers as self‐supported electrodes for flexible lithium‐ion batteries. Small 11, 2762–2767 (2015)CrossRef
13.
Zurück zum Zitat P. Li, Z. Tan, H.T. Lu, J. Tan, X. Zhu, Q. Rui, H.H. Hng, Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 206, 253–258 (2012)CrossRef P. Li, Z. Tan, H.T. Lu, J. Tan, X. Zhu, Q. Rui, H.H. Hng, Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 206, 253–258 (2012)CrossRef
14.
Zurück zum Zitat J. Cheng, J. Du, Facile synthesis of germanium–graphene nanocomposites and their application as anode materials for lithium ion batteries. CrystEngComm 2, 397–400 (2012)CrossRef J. Cheng, J. Du, Facile synthesis of germanium–graphene nanocomposites and their application as anode materials for lithium ion batteries. CrystEngComm 2, 397–400 (2012)CrossRef
15.
Zurück zum Zitat J.G. Ren, Q.H. Wu, H. Tang, G. Hong, W. Zhang, S.T. Lee, Germanium–graphene composite anode for high-energy lithium batteries with long cycle life. J. Mater. Chem. A 5, 1821–1826 (2013)CrossRef J.G. Ren, Q.H. Wu, H. Tang, G. Hong, W. Zhang, S.T. Lee, Germanium–graphene composite anode for high-energy lithium batteries with long cycle life. J. Mater. Chem. A 5, 1821–1826 (2013)CrossRef
16.
Zurück zum Zitat C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi et al., In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. J. Mater. Chem. A 31, 8897–8902 (2013)CrossRef C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi et al., In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. J. Mater. Chem. A 31, 8897–8902 (2013)CrossRef
17.
Zurück zum Zitat C.H. Kim, H.S. Im, Y.J. Cho, C.S. Jung, D.M. Jang, Y. Myung et al., High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries. J. Phys. Chem. C 50, 26190–26196 (2012)CrossRef C.H. Kim, H.S. Im, Y.J. Cho, C.S. Jung, D.M. Jang, Y. Myung et al., High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries. J. Phys. Chem. C 50, 26190–26196 (2012)CrossRef
18.
Zurück zum Zitat D.J. Xue, S. Xin, Y. Yan, K.C. Jiang, Y.X. Yin, Y.G. Guo et al., Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J. Am. Chem. Soc. 5, 2512–2515 (2012)CrossRef D.J. Xue, S. Xin, Y. Yan, K.C. Jiang, Y.X. Yin, Y.G. Guo et al., Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J. Am. Chem. Soc. 5, 2512–2515 (2012)CrossRef
19.
Zurück zum Zitat A.M. Chockla, M.G. Panthani, V.C. Holmberg, C.M. Hessel, D.K. Reid, T.D. Bogart et al., Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries. J. Phys. Chem. C 22, 11917–11923 (2012)CrossRef A.M. Chockla, M.G. Panthani, V.C. Holmberg, C.M. Hessel, D.K. Reid, T.D. Bogart et al., Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries. J. Phys. Chem. C 22, 11917–11923 (2012)CrossRef
20.
Zurück zum Zitat C. Zhong, J.Z. Wang, X.W. Gao, D. Wexler, H.K. Liu, In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries. J. Mater. Chem. A 36, 10798–10804 (2013)CrossRef C. Zhong, J.Z. Wang, X.W. Gao, D. Wexler, H.K. Liu, In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries. J. Mater. Chem. A 36, 10798–10804 (2013)CrossRef
21.
Zurück zum Zitat H. Kim, Y. Son, C. Park, J. Cho, H.C. Choi, Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. Angew. Chem. Int. Ed. 23, 5997–6001 (2013)CrossRef H. Kim, Y. Son, C. Park, J. Cho, H.C. Choi, Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. Angew. Chem. Int. Ed. 23, 5997–6001 (2013)CrossRef
22.
Zurück zum Zitat N.G. Rudawski, B.R. Yates, M.R. Holzworth, K.S. Jones, R.G. Elliman, A.A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries. J. Power Sources 223, 336–340 (2013)CrossRef N.G. Rudawski, B.R. Yates, M.R. Holzworth, K.S. Jones, R.G. Elliman, A.A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries. J. Power Sources 223, 336–340 (2013)CrossRef
23.
Zurück zum Zitat B. Laforge, L. Levan-Jodin, R. Salot, A. Billard, Study of germanium as electrode in thin-film battery. J. Electrochem. Soc. 2, A181–A188 (2008)CrossRef B. Laforge, L. Levan-Jodin, R. Salot, A. Billard, Study of germanium as electrode in thin-film battery. J. Electrochem. Soc. 2, A181–A188 (2008)CrossRef
24.
Zurück zum Zitat J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 5, A698–A702 (2004)CrossRef J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 5, A698–A702 (2004)CrossRef
25.
Zurück zum Zitat C.M. Hwang, J.W. Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries. Thin Solid Films 22, 6590–6597 (2010)CrossRef C.M. Hwang, J.W. Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries. Thin Solid Films 22, 6590–6597 (2010)CrossRef
26.
Zurück zum Zitat L.C. Yang, Q.S. Gao, L. Li, Y. Tang, Y.P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 3, 418–421 (2010)CrossRef L.C. Yang, Q.S. Gao, L. Li, Y. Tang, Y.P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 3, 418–421 (2010)CrossRef
27.
Zurück zum Zitat T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha et al., A Ge inverse opal with porous walls as an anode for lithium ion batteries. Energy Environ. Sci. 10, 9028–9033 (2012)CrossRef T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha et al., A Ge inverse opal with porous walls as an anode for lithium ion batteries. Energy Environ. Sci. 10, 9028–9033 (2012)CrossRef
28.
Zurück zum Zitat M.G. Kim, J. Cho, Nanocomposite of amorphous Ge and Sn nanoparticles as an anode material for Li secondary battery. J. Electrochem. Soc. 4, A277–A282 (2009)CrossRef M.G. Kim, J. Cho, Nanocomposite of amorphous Ge and Sn nanoparticles as an anode material for Li secondary battery. J. Electrochem. Soc. 4, A277–A282 (2009)CrossRef
29.
Zurück zum Zitat Y.J. Cho, C.H. Kim, H.S. Im, Y. Myung, H.S. Kim, S.H. Back et al., Germanium–tin alloy nanocrystals for high-performance lithium ion batteries. Phys. Chem. Chem. Phys. 28, 11691–11695 (2013)CrossRef Y.J. Cho, C.H. Kim, H.S. Im, Y. Myung, H.S. Kim, S.H. Back et al., Germanium–tin alloy nanocrystals for high-performance lithium ion batteries. Phys. Chem. Chem. Phys. 28, 11691–11695 (2013)CrossRef
30.
Zurück zum Zitat J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. 4, 1511–1515 (2012)CrossRef J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. 4, 1511–1515 (2012)CrossRef
31.
Zurück zum Zitat K.C. Klavetter, S.M. Wood, Y.M. Lin, J.L. Snider, N.C. Davy, A.M. Chockla et al., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 238, 123–136 (2013)CrossRef K.C. Klavetter, S.M. Wood, Y.M. Lin, J.L. Snider, N.C. Davy, A.M. Chockla et al., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 238, 123–136 (2013)CrossRef
32.
Zurück zum Zitat T. Wang, G. Xie, J. Zhu, B. Lu, Elastic reduced graphene oxide nanosheets embedded in germanium nanofiber matrix as anode material for high-performance Li-ion battery. Electrochim. Acta 186, 64–70 (2015)CrossRef T. Wang, G. Xie, J. Zhu, B. Lu, Elastic reduced graphene oxide nanosheets embedded in germanium nanofiber matrix as anode material for high-performance Li-ion battery. Electrochim. Acta 186, 64–70 (2015)CrossRef
33.
Zurück zum Zitat X.H. Liu, S. Huang, S.T. Picraux, J. Li, T. Zhu, J.Y. Huang, Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011)CrossRef X.H. Liu, S. Huang, S.T. Picraux, J. Li, T. Zhu, J.Y. Huang, Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011)CrossRef
34.
Zurück zum Zitat W. Wei, J. Xu, M. Xu, S. Zhang, L. Guo, Recent progress on Ge oxide anode materials for lithium-ion batteries. Sci. China Chem. 61, 515–525 (2018)CrossRef W. Wei, J. Xu, M. Xu, S. Zhang, L. Guo, Recent progress on Ge oxide anode materials for lithium-ion batteries. Sci. China Chem. 61, 515–525 (2018)CrossRef
35.
Zurück zum Zitat G. Collins, D. Aureau, J.D. Holmes, A. Etcheberry, C. O’Dwyer, Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge (100). Am. Chem. Soc. 30, 14123–14127 (2014) G. Collins, D. Aureau, J.D. Holmes, A. Etcheberry, C. O’Dwyer, Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge (100). Am. Chem. Soc. 30, 14123–14127 (2014)
36.
Zurück zum Zitat Y. Shiyu Sun, S.Z. Liu, D.-I. Lee, S. Peterson, P. Pianetta, Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions. Appl. Phys. Lett. 88, 021903 (2006)CrossRef Y. Shiyu Sun, S.Z. Liu, D.-I. Lee, S. Peterson, P. Pianetta, Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions. Appl. Phys. Lett. 88, 021903 (2006)CrossRef
37.
Zurück zum Zitat Y. Ogawa, Y. Yuasa, F. Minami, S. Oda, Tip-enhanced Raman mapping of a single Ge nanowire. Appl. Phys. Lett. 99, 053112 (2011)CrossRef Y. Ogawa, Y. Yuasa, F. Minami, S. Oda, Tip-enhanced Raman mapping of a single Ge nanowire. Appl. Phys. Lett. 99, 053112 (2011)CrossRef
38.
Zurück zum Zitat Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Germanium nanowires sheathed with an oxide layer. Phys. Rev. 61, 4518–4521 (2000)CrossRef Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Germanium nanowires sheathed with an oxide layer. Phys. Rev. 61, 4518–4521 (2000)CrossRef
39.
Zurück zum Zitat Y.D. Ko, J.G. Kang, G.H. Lee, J.G. Park, K.S. Park, Y.H. Jin, D.W. Kim, Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale 3, 3371–3375 (2011)CrossRef Y.D. Ko, J.G. Kang, G.H. Lee, J.G. Park, K.S. Park, Y.H. Jin, D.W. Kim, Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale 3, 3371–3375 (2011)CrossRef
40.
Zurück zum Zitat D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski, A. Gedanken, Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem. Mater. 14, 4155 (2002)CrossRef D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski, A. Gedanken, Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem. Mater. 14, 4155 (2002)CrossRef
41.
Zurück zum Zitat J. Gu, S.M. Collins, A.I Carim, X. Hao, B.M. Bartlett, S. Maldonado, Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage. Nano Lett. 12, 4617–4623 (2012)CrossRef J. Gu, S.M. Collins, A.I Carim, X. Hao, B.M. Bartlett, S. Maldonado, Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage. Nano Lett. 12, 4617–4623 (2012)CrossRef
42.
Zurück zum Zitat G. Cui, L. Gu, L. Zhi, N. Kaskhedikar, P.A. van Aken, K. Mullen, J. Maier, A germanium–carbon nanocomposite material for lithium batteries. J. Adv. Mater. 20, 3079 (2008)CrossRef G. Cui, L. Gu, L. Zhi, N. Kaskhedikar, P.A. van Aken, K. Mullen, J. Maier, A germanium–carbon nanocomposite material for lithium batteries. J. Adv. Mater. 20, 3079 (2008)CrossRef
43.
Zurück zum Zitat J. Cho, Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 20, 4009 (2010)CrossRef J. Cho, Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 20, 4009 (2010)CrossRef
44.
Zurück zum Zitat H. Lee, H. Kim, S.-G. Doo, J. Cho, Synthesis and optimization of nanoparticle Ge confined in a carbon matrix for lithium battery anode material. J. Electrochem. Soc. 154, A343 (2007)CrossRef H. Lee, H. Kim, S.-G. Doo, J. Cho, Synthesis and optimization of nanoparticle Ge confined in a carbon matrix for lithium battery anode material. J. Electrochem. Soc. 154, A343 (2007)CrossRef
Metadaten
Titel
High-capacity CVD-grown Ge nanowire anodes for lithium-ion batteries: simple chemical etching approach for oxide removal
verfasst von
Pangil Kim
Tao Chen
Seunghyun Song
Wipakorn Jevasuwan
Churl Seung Lee
Naoki Fukata
Joonho Bae
Publikationsdatum
04.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04976-2

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Science: Materials in Electronics 2/2021 Zur Ausgabe

Neuer Inhalt