Skip to main content
Erschienen in: Journal of Materials Science 9/2018

09.01.2018 | Energy materials

High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha

verfasst von: Xiao Liu, Huanlei Wang, Yongpeng Cui, Xiaonan Xu, Hao Zhang, Gaofei Lu, Jing Shi, Wei Liu, Shougang Chen, Xin Wang

Erschienen in: Journal of Materials Science | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A sodium-ion capacitor is created with excellent energy and power performances. All the positive and negative electrodes are fabricated by Enteromorpha-derived hierarchical porous carbon (EDHPC). The high specific surface area with hierarchical porosity, dilated graphitic layer with high edge defects, and rich heteroatom doping of EDHPC ensures reversible sodium storage and facile ion transport as sodium-ion battery anode. By tuning the potential of the positive and negative electrodes, both electrodes achieve the equal capacity, which allows the electrochemical performance of the assembled sodium-ion capacitor to be greatly improved and optimized. The assembled sodium-ion capacitor has a maximum energy density of 84 Wh kg−1, while maintaining 42 Wh kg−1 at a high power of 9053 W kg−1. The optimized sodium-ion capacitor can retain 67% of its capacity after 5000 cycles. This work gives a general strategy for designing high-performance sodium-ion capacitors for low-cost and large-scale production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980 Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980
2.
Zurück zum Zitat Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377 Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377
3.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854
4.
Zurück zum Zitat Wang F, Wang X, Chang Z et al (2015) A quasi-solid-state sodium-ion capacitor with high energy density. Adv Mater 27:6962–6968 Wang F, Wang X, Chang Z et al (2015) A quasi-solid-state sodium-ion capacitor with high energy density. Adv Mater 27:6962–6968
6.
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211 Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211
8.
Zurück zum Zitat Le Z, Liu F, Nie P et al (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960 Le Z, Liu F, Nie P et al (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960
9.
Zurück zum Zitat Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647 Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647
10.
Zurück zum Zitat Weng Z, Li F, Wang DW, Wen L, Cheng HM (2013) Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem 52:3722–3725 Weng Z, Li F, Wang DW, Wen L, Cheng HM (2013) Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem 52:3722–3725
11.
Zurück zum Zitat Xu X, Cui Y, Shi J et al (2017) Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Adv 7:17178–17183 Xu X, Cui Y, Shi J et al (2017) Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Adv 7:17178–17183
12.
Zurück zum Zitat Dong S, Shen L, Li H et al (2015) Pseudocapacitive behaviours of Na2Ti3O7 @ CNT coaxial nanocables for high-performance sodiumion capacitors. J Mater Chem A 3:21277–21283 Dong S, Shen L, Li H et al (2015) Pseudocapacitive behaviours of Na2Ti3O7 @ CNT coaxial nanocables for high-performance sodiumion capacitors. J Mater Chem A 3:21277–21283
13.
Zurück zum Zitat Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279 Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279
14.
Zurück zum Zitat Liu Y, Chen F, Ye W et al (2017) High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal–air batteries. Adv Funct Mater 27:1606034 Liu Y, Chen F, Ye W et al (2017) High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal–air batteries. Adv Funct Mater 27:1606034
15.
Zurück zum Zitat Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26:3082–3093 Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26:3082–3093
16.
Zurück zum Zitat Zhang Y, Liu S, Zheng X et al (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 27:1604687 Zhang Y, Liu S, Zheng X et al (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 27:1604687
17.
Zurück zum Zitat Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 27:1602898 Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 27:1602898
18.
Zurück zum Zitat Gao X, Xing W, Zhou J et al (2014) Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim Acta 133:459–466 Gao X, Xing W, Zhou J et al (2014) Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim Acta 133:459–466
19.
Zurück zum Zitat Cui J, Xi Y, Chen S et al (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater 26:8487–8495 Cui J, Xi Y, Chen S et al (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater 26:8487–8495
20.
Zurück zum Zitat Yu W, Wang H, Liu S et al (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983 Yu W, Wang H, Liu S et al (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983
21.
Zurück zum Zitat Wu M, Li P, Li Y, Liu J, Wang Y (2015) Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Adv 5:16575–16581 Wu M, Li P, Li Y, Liu J, Wang Y (2015) Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Adv 5:16575–16581
22.
Zurück zum Zitat Tian Z, Xiang M, Zhou J, Hu L, Cai J (2016) Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta 211:225–233 Tian Z, Xiang M, Zhou J, Hu L, Cai J (2016) Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta 211:225–233
23.
Zurück zum Zitat Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z (2015) Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater 5:1500550 Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z (2015) Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater 5:1500550
24.
Zurück zum Zitat Li H, Peng L, Zhu Y, Zhang X, Yu G (2016) Achieving high-energy–high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett 16:5938–5943 Li H, Peng L, Zhu Y, Zhang X, Yu G (2016) Achieving high-energy–high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett 16:5938–5943
25.
Zurück zum Zitat Wang HL, Gao QM, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022 Wang HL, Gao QM, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022
26.
Zurück zum Zitat Qie L, Chen W, Xiong X et al (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195 Qie L, Chen W, Xiong X et al (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195
27.
Zurück zum Zitat Cao Y, Xiao L, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787 Cao Y, Xiao L, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787
28.
Zurück zum Zitat Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137 Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137
29.
Zurück zum Zitat Chen H, Chen C, Liu Y, et al (2017) High-quality graphene microflower design for high-performance Li–S and Al-ion batteries. Adv Energy Mater 7:1700051 Chen H, Chen C, Liu Y, et al (2017) High-quality graphene microflower design for high-performance Li–S and Al-ion batteries. Adv Energy Mater 7:1700051
30.
Zurück zum Zitat Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246 Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246
31.
Zurück zum Zitat Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630 Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630
32.
Zurück zum Zitat Qu K, Zheng Y, Dai S, Qiao SZ (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381 Qu K, Zheng Y, Dai S, Qiao SZ (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381
33.
Zurück zum Zitat Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on three-dimensional anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048 Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on three-dimensional anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048
34.
Zurück zum Zitat Tian J, Liu Z, Li Z, Wang W, Zhang H (2017) Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv 7:12089–12097 Tian J, Liu Z, Li Z, Wang W, Zhang H (2017) Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv 7:12089–12097
35.
Zurück zum Zitat Hao E, Liu W, Liu S et al (2017) Rich sulfur doping porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage. J Mater Chem A 5:2204–2214 Hao E, Liu W, Liu S et al (2017) Rich sulfur doping porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage. J Mater Chem A 5:2204–2214
36.
Zurück zum Zitat Ou J, Yang L, Zhang Z, Xi X (2016) Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sour 333:193–202 Ou J, Yang L, Zhang Z, Xi X (2016) Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sour 333:193–202
37.
Zurück zum Zitat Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405 Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405
39.
Zurück zum Zitat Xu D, Chen C, Xie J et al (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929 Xu D, Chen C, Xie J et al (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929
40.
Zurück zum Zitat Ding J, Wang H, Li Z et al (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015 Ding J, Wang H, Li Z et al (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015
41.
Zurück zum Zitat Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110 Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110
42.
Zurück zum Zitat Lu M, Yu W, Shi J et al (2017) Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium and sodium-ion batteries. Electrochim Acta 251:396–406 Lu M, Yu W, Shi J et al (2017) Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium and sodium-ion batteries. Electrochim Acta 251:396–406
43.
Zurück zum Zitat Yang T, Qian T, Wang M et al (2016) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28:539–545 Yang T, Qian T, Wang M et al (2016) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28:539–545
44.
Zurück zum Zitat Luo Z, Zhou J, Cao X et al (2017) Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon 122:82–91 Luo Z, Zhou J, Cao X et al (2017) Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon 122:82–91
45.
Zurück zum Zitat Zhang H, Ming H, Zhang W, Cao G, Yang Y (2017) Coupled carbonization strategy towards advanced hard carbon for high energy sodium-ion battery. ACS Appl Mater 9:23766–23774 Zhang H, Ming H, Zhang W, Cao G, Yang Y (2017) Coupled carbonization strategy towards advanced hard carbon for high energy sodium-ion battery. ACS Appl Mater 9:23766–23774
46.
Zurück zum Zitat Fan L, Liu Q, Chen S, Xu Z, Lu B (2017) Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv Energy Mater 7:1602778 Fan L, Liu Q, Chen S, Xu Z, Lu B (2017) Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv Energy Mater 7:1602778
47.
Zurück zum Zitat Kumar NA, Gaddam RR, Suresh M et al (2017) Porphyrin-graphene oxide frameworks for long life sodium ion batteries. J Mater Chem A 5:13204–13211 Kumar NA, Gaddam RR, Suresh M et al (2017) Porphyrin-graphene oxide frameworks for long life sodium ion batteries. J Mater Chem A 5:13204–13211
48.
Zurück zum Zitat Zhao G, Zou G, Qiu X et al (2017) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30 Zhao G, Zou G, Qiu X et al (2017) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30
49.
Zurück zum Zitat Zhu Y-E, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532 Zhu Y-E, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532
50.
Zurück zum Zitat Zhao P-Y, Yu B-J, Sun S et al (2017) High-performance anode of sodium ion battery from polyacrylonitrile/humic acid composite electrospun carbon fibers. Electrochim Acta 232:348–356 Zhao P-Y, Yu B-J, Sun S et al (2017) High-performance anode of sodium ion battery from polyacrylonitrile/humic acid composite electrospun carbon fibers. Electrochim Acta 232:348–356
51.
Zurück zum Zitat Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L (2017) High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater 9:391–397 Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L (2017) High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater 9:391–397
52.
Zurück zum Zitat Yan D, Xu X, Lu T, Hu B, Chua DHC, Pan L (2016) Reduced graphene oxide/carbon nanotubes sponge: a new high capacity and long life anode material for sodium-ion batteries. J Power Sour 316:132–138 Yan D, Xu X, Lu T, Hu B, Chua DHC, Pan L (2016) Reduced graphene oxide/carbon nanotubes sponge: a new high capacity and long life anode material for sodium-ion batteries. J Power Sour 316:132–138
53.
Zurück zum Zitat Ma L, Chen R, Hu Y et al (2016) Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale 8:17911–17918 Ma L, Chen R, Hu Y et al (2016) Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale 8:17911–17918
54.
Zurück zum Zitat Liu S, Cai Z, Zhou J, Pan A, Liang S (2016) Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J Mater Chem A 4:18278–18283 Liu S, Cai Z, Zhou J, Pan A, Liang S (2016) Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J Mater Chem A 4:18278–18283
55.
Zurück zum Zitat Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4:5149–5158 Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4:5149–5158
56.
Zurück zum Zitat Babu B, Shaijumon MM (2017) High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sour 353:85–94 Babu B, Shaijumon MM (2017) High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sour 353:85–94
57.
Zurück zum Zitat Lu K, Song B, Gao X, Dai H, Zhang J, Ma H (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sour 303:347–353 Lu K, Song B, Gao X, Dai H, Zhang J, Ma H (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sour 303:347–353
58.
Zurück zum Zitat Cui Y, Wang H, Mao N et al (2017) Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. J Power Sour 361:182–194 Cui Y, Wang H, Mao N et al (2017) Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. J Power Sour 361:182–194
Metadaten
Titel
High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha
verfasst von
Xiao Liu
Huanlei Wang
Yongpeng Cui
Xiaonan Xu
Hao Zhang
Gaofei Lu
Jing Shi
Wei Liu
Shougang Chen
Xin Wang
Publikationsdatum
09.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1982-9

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Science 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.