Skip to main content
Erschienen in: Journal of Scientific Computing 2/2024

01.02.2024

High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State

verfasst von: Linfeng Xu, Shengrong Ding, Kailiang Wu

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All the existing entropy stable (ES) schemes for relativistic hydrodynamics (RHD) in the literature were restricted to the ideal equation of state (EOS), which however is often a poor approximation for most relativistic flows due to its inconsistency with the relativistic kinetic theory. This paper develops high-order ES finite difference schemes for RHD with general Synge-type EOS, which encompasses a range of special EOSs. We first establish an entropy pair for the RHD equations with general Synge-type EOS in any space dimensions. We rigorously prove that the found entropy function is strictly convex and derive the associated entropy variables, laying the foundation for designing entropy conservative (EC) and ES schemes. Due to relativistic effects, one cannot explicitly express primitive variables, fluxes, and entropy variables in terms of conservative variables. Consequently, this highly complicates the analysis of the entropy structure of the RHD equations, the investigation of entropy convexity, and the construction of EC numerical fluxes. By using a suitable set of parameter variables, we construct novel two-point EC fluxes in a unified form for general Synge-type EOS. We obtain high-order EC schemes through linear combinations of the two-point EC fluxes. Arbitrarily high-order accurate ES schemes are achieved by incorporating dissipation terms into the EC schemes, based on (weighted) essentially non-oscillatory reconstructions. Additionally, we derive the general dissipation matrix for general Synge-type EOS based on the scaled eigenvectors of the RHD system. We also define a suitable average of the dissipation matrix at the cell interfaces to ensure that the resulting ES schemes can resolve stationary contact discontinuities accurately. Several numerical examples are provided to validate the accuracy and effectiveness of our schemes for RHD with four special EOSs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)MathSciNet Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)MathSciNet
2.
Zurück zum Zitat Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: Application to structure preserving discretization. J. Comput. Phys. 453, 110955 (2022)MathSciNet Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: Application to structure preserving discretization. J. Comput. Phys. 453, 110955 (2022)MathSciNet
3.
Zurück zum Zitat Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016)MathSciNet Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016)MathSciNet
4.
Zurück zum Zitat Barth, T.: Numerical methods for gasdynamic systems on unstructured meshes. In: An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer (1999) Barth, T.: Numerical methods for gasdynamic systems on unstructured meshes. In: An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer (1999)
5.
Zurück zum Zitat Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems. In: Compatible Spatial Discretizations, pp. 69–88. Springer (2006) Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems. In: Compatible Spatial Discretizations, pp. 69–88. Springer (2006)
6.
Zurück zum Zitat Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys. 71, 1–29 (2020)MathSciNet Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys. 71, 1–29 (2020)MathSciNet
7.
Zurück zum Zitat Biswas, B., Dubey, R.K.: Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv. Comput. Math. 44, 1153–1181 (2018)MathSciNet Biswas, B., Dubey, R.K.: Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv. Comput. Math. 44, 1153–1181 (2018)MathSciNet
8.
Zurück zum Zitat Biswas, B., Kumar, H., Bhoriya, D.: Entropy stable discontinuous Galerkin schemes for the special relativistic hydrodynamics equations. Comput. Math. Appl. 112, 55–75 (2022)MathSciNet Biswas, B., Kumar, H., Bhoriya, D.: Entropy stable discontinuous Galerkin schemes for the special relativistic hydrodynamics equations. Comput. Math. Appl. 112, 55–75 (2022)MathSciNet
9.
Zurück zum Zitat Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: Discontinuous interfaces. SIAM J. Sci. Comput. 36, B835–B867 (2014)MathSciNet Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: Discontinuous interfaces. SIAM J. Sci. Comput. 36, B835–B867 (2014)MathSciNet
10.
Zurück zum Zitat Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNet Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNet
11.
Zurück zum Zitat Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)MathSciNet Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)MathSciNet
12.
Zurück zum Zitat Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNet Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNet
13.
Zurück zum Zitat Chen, Y., Kuang, Y., Tang, H.: Second-order accurate BGK schemes for the special relativistic hydrodynamics with the Synge equation of state. J. Comput. Phys. 442, 110438 (2021)MathSciNet Chen, Y., Kuang, Y., Tang, H.: Second-order accurate BGK schemes for the special relativistic hydrodynamics with the Synge equation of state. J. Comput. Phys. 442, 110438 (2021)MathSciNet
14.
Zurück zum Zitat Chen, Y., Wu, K.: A physical-constraint-preserving finite volume WENO method for special relativistic hydrodynamics on unstructured meshes. J. Comput. Phys. 466, 111398 (2022)MathSciNet Chen, Y., Wu, K.: A physical-constraint-preserving finite volume WENO method for special relativistic hydrodynamics on unstructured meshes. J. Comput. Phys. 466, 111398 (2022)MathSciNet
15.
Zurück zum Zitat Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)MathSciNet Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)MathSciNet
16.
Zurück zum Zitat Del Zanna, L., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows-I. Hydrodyn. Astron. Astrophys. 390, 1177–1186 (2002) Del Zanna, L., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows-I. Hydrodyn. Astron. Astrophys. 390, 1177–1186 (2002)
17.
Zurück zum Zitat Dolezal, A., Wong, S.: Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 120, 266–277 (1995)MathSciNet Dolezal, A., Wong, S.: Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 120, 266–277 (1995)MathSciNet
18.
Zurück zum Zitat Duan, J., Tang, H.: High-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamics. Adv. Appl. Math. Mech. 12, 1–29 (2020)MathSciNet Duan, J., Tang, H.: High-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamics. Adv. Appl. Math. Mech. 12, 1–29 (2020)MathSciNet
19.
Zurück zum Zitat Duan, J., Tang, H.: High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics. J. Comput. Phys. 421, 109731 (2020)MathSciNet Duan, J., Tang, H.: High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics. J. Comput. Phys. 421, 109731 (2020)MathSciNet
20.
Zurück zum Zitat Duan, J., Tang, H.: Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics. J. Comput. Phys. 426, 109949 (2021)MathSciNet Duan, J., Tang, H.: Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics. J. Comput. Phys. 426, 109949 (2021)MathSciNet
21.
Zurück zum Zitat Duan, J., Tang, H.: High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. J. Comput. Phys. 431, 110136 (2021)MathSciNet Duan, J., Tang, H.: High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. J. Comput. Phys. 431, 110136 (2021)MathSciNet
22.
Zurück zum Zitat Duan, J., Tang, H.: High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto) hydrodynamics. J. Comput. Phys. 456, 111038 (2022)MathSciNet Duan, J., Tang, H.: High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto) hydrodynamics. J. Comput. Phys. 456, 111038 (2022)MathSciNet
23.
Zurück zum Zitat Endeve, E., Buffaloe, J., Dunham, S.J., Roberts, N., Andrew, K., Barker, B., Pochik, D., Pulsinelli, J., Mezzacappa, A.: thornado-hydro: towards discontinuous Galerkin methods for supernova hydrodynamics. In: Journal of Physics: Conference Series, vol. 1225, p. 012014. IOP Publishing (2019) Endeve, E., Buffaloe, J., Dunham, S.J., Roberts, N., Andrew, K., Barker, B., Pochik, D., Pulsinelli, J., Mezzacappa, A.: thornado-hydro: towards discontinuous Galerkin methods for supernova hydrodynamics. In: Journal of Physics: Conference Series, vol. 1225, p. 012014. IOP Publishing (2019)
24.
Zurück zum Zitat Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNet Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNet
25.
Zurück zum Zitat Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNet Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNet
26.
Zurück zum Zitat Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139–159 (2013)MathSciNet Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139–159 (2013)MathSciNet
27.
Zurück zum Zitat Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNet Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNet
28.
Zurück zum Zitat Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)MathSciNet Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)MathSciNet
29.
Zurück zum Zitat Harten, A., Hyman, J.M., Lax, P.D., Keyfitz, B.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29, 297–322 (1976)MathSciNet Harten, A., Hyman, J.M., Lax, P.D., Keyfitz, B.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29, 297–322 (1976)MathSciNet
30.
Zurück zum Zitat He, P., Tang, H.: An adaptive moving mesh method for two-dimensional relativistic hydrodynamics. Commun. Comput. Phys. 11, 114–146 (2012)MathSciNet He, P., Tang, H.: An adaptive moving mesh method for two-dimensional relativistic hydrodynamics. Commun. Comput. Phys. 11, 114–146 (2012)MathSciNet
31.
Zurück zum Zitat Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126, 103–151 (2014)MathSciNet Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126, 103–151 (2014)MathSciNet
32.
Zurück zum Zitat Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)MathSciNet Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)MathSciNet
33.
Zurück zum Zitat Ketcheson, D.I.: Relaxation Runge–Kutta methods: Conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57, 2850–2870 (2019)MathSciNet Ketcheson, D.I.: Relaxation Runge–Kutta methods: Conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57, 2850–2870 (2019)MathSciNet
34.
Zurück zum Zitat Kidder, L.E., Field, S.E., Foucart, F., Erick, S.: SpECTRE: a task-based discontinuous Galerkin code for relativistic astrophysics. J. Comput. Phys. 335, 84–114 (2017)MathSciNet Kidder, L.E., Field, S.E., Foucart, F., Erick, S.: SpECTRE: a task-based discontinuous Galerkin code for relativistic astrophysics. J. Comput. Phys. 335, 84–114 (2017)MathSciNet
35.
Zurück zum Zitat Lefloch, P.G., Mercier, J.-M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40, 1968–1992 (2002)MathSciNet Lefloch, P.G., Mercier, J.-M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40, 1968–1992 (2002)MathSciNet
36.
Zurück zum Zitat Li, S., Duan, J., Tang, H.: High-order accurate entropy stable adaptive moving mesh finite difference schemes for (multi-component) compressible Euler equations with the stiffened equation of state. Comput. Methods Appl. Mech. Eng. 399, 115311 (2022)MathSciNet Li, S., Duan, J., Tang, H.: High-order accurate entropy stable adaptive moving mesh finite difference schemes for (multi-component) compressible Euler equations with the stiffened equation of state. Comput. Methods Appl. Mech. Eng. 399, 115311 (2022)MathSciNet
37.
Zurück zum Zitat Liu, Y., Shu, C.-W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2018)MathSciNet Liu, Y., Shu, C.-W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2018)MathSciNet
38.
Zurück zum Zitat Marquina, A., Serna, S., Ibáñez, J.M.: Capturing composite waves in non-convex special relativistic hydrodynamics. J. Sci. Comput. 81, 2132–2161 (2019)MathSciNet Marquina, A., Serna, S., Ibáñez, J.M.: Capturing composite waves in non-convex special relativistic hydrodynamics. J. Sci. Comput. 81, 2132–2161 (2019)MathSciNet
39.
Zurück zum Zitat Martí, J.M., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6, 7 (2003)MathSciNet Martí, J.M., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6, 7 (2003)MathSciNet
40.
Zurück zum Zitat Martí, J.M., Müller, E.: Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics. Living Rev. Comput. Astrophys. 1, 3 (2015) Martí, J.M., Müller, E.: Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics. Living Rev. Comput. Astrophys. 1, 3 (2015)
41.
Zurück zum Zitat Mathews, W.G.: The hydromagnetic free expansion of a relativistic gas. Astrophys. J. 165, 147 (1971) Mathews, W.G.: The hydromagnetic free expansion of a relativistic gas. Astrophys. J. 165, 147 (1971)
42.
Zurück zum Zitat May, M.M., White, R.H.: Hydrodynamic calculations of general-relativistic collapse. Phys. Rev. 141, 1232 (1966)MathSciNet May, M.M., White, R.H.: Hydrodynamic calculations of general-relativistic collapse. Phys. Rev. 141, 1232 (1966)MathSciNet
43.
Zurück zum Zitat Mewes, V., Zlochower, Y., Campanelli, M., Baumgarte, T.W., Etienne, Z.B., Armengol, F.G.L., Cipolletta, F.: Numerical relativity in spherical coordinates: A new dynamical spacetime and general relativistic MHD evolution framework for the Einstein Toolkit. Phys. Rev. D 101, 104007 (2020)MathSciNet Mewes, V., Zlochower, Y., Campanelli, M., Baumgarte, T.W., Etienne, Z.B., Armengol, F.G.L., Cipolletta, F.: Numerical relativity in spherical coordinates: A new dynamical spacetime and general relativistic MHD evolution framework for the Einstein Toolkit. Phys. Rev. D 101, 104007 (2020)MathSciNet
44.
Zurück zum Zitat Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows-I. Hydrodynamics. Mont. Not. R. Astronom. Soc. 364, 126–136 (2005) Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows-I. Hydrodynamics. Mont. Not. R. Astronom. Soc. 364, 126–136 (2005)
45.
Zurück zum Zitat Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. Suppl. Ser. 160, 199 (2005) Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. Suppl. Ser. 160, 199 (2005)
46.
Zurück zum Zitat Osher, S.: Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal. 21, 217–235 (1984)MathSciNet Osher, S.: Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal. 21, 217–235 (1984)MathSciNet
47.
Zurück zum Zitat Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50, 19–51 (1988)MathSciNet Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50, 19–51 (1988)MathSciNet
48.
Zurück zum Zitat Radice, D., Rezzolla, L.: Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes. Phys. Rev. D 84, 024010 (2011) Radice, D., Rezzolla, L.: Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes. Phys. Rev. D 84, 024010 (2011)
49.
Zurück zum Zitat Radice, D., Rezzolla, L.: THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astronomy Astrophys. 547, A26 (2012) Radice, D., Rezzolla, L.: THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astronomy Astrophys. 547, A26 (2012)
50.
Zurück zum Zitat Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76, 216–242 (2018)MathSciNet Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76, 216–242 (2018)MathSciNet
51.
Zurück zum Zitat Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42, A612–A638 (2020)MathSciNet Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42, A612–A638 (2020)MathSciNet
52.
Zurück zum Zitat Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013) Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)
53.
Zurück zum Zitat Roe, P.L.: Affordable, entropy consistent flux functions. In: 11th International Conference on Hyperbolic Problems: Theory, Numerics and Applications, Lyon (2006) Roe, P.L.: Affordable, entropy consistent flux functions. In: 11th International Conference on Hyperbolic Problems: Theory, Numerics and Applications, Lyon (2006)
54.
Zurück zum Zitat Ryu, D., Chattopadhyay, I., Choi, E.: Equation of state in numerical relativistic hydrodynamics. Astrophys. J. Suppl. Ser. 166, 410 (2006) Ryu, D., Chattopadhyay, I., Choi, E.: Equation of state in numerical relativistic hydrodynamics. Astrophys. J. Suppl. Ser. 166, 410 (2006)
55.
Zurück zum Zitat Sokolov, I., Zhang, H.-M., Sakai, J.: Simple and efficient Godunov scheme for computational relativistic gas dynamics. J. Comput. Phys. 172, 209–234 (2001) Sokolov, I., Zhang, H.-M., Sakai, J.: Simple and efficient Godunov scheme for computational relativistic gas dynamics. J. Comput. Phys. 172, 209–234 (2001)
56.
Zurück zum Zitat Synge, J.L.: The Relativistic Gas. North-Holland Publishing Company, Amsterdam (1957) Synge, J.L.: The Relativistic Gas. North-Holland Publishing Company, Amsterdam (1957)
57.
Zurück zum Zitat Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49, 91–103 (1987)MathSciNet Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49, 91–103 (1987)MathSciNet
58.
Zurück zum Zitat Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNet Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNet
59.
Zurück zum Zitat Taub, A.: Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328 (1948)MathSciNet Taub, A.: Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328 (1948)MathSciNet
60.
Zurück zum Zitat Tchekhovskoy, A., McKinney, J.C., Narayan, R.: WHAM: a WENO-based general relativistic numerical scheme-I. Hydrodynamics. Mon. Not. R. Astronom. Soc. 379, 469–497 (2007) Tchekhovskoy, A., McKinney, J.C., Narayan, R.: WHAM: a WENO-based general relativistic numerical scheme-I. Hydrodynamics. Mon. Not. R. Astronom. Soc. 379, 469–497 (2007)
61.
Zurück zum Zitat Teukolsky, S.A.: Formulation of discontinuous Galerkin methods for relativistic astrophysics. J. Comput. Phys. 312, 333–356 (2016)MathSciNet Teukolsky, S.A.: Formulation of discontinuous Galerkin methods for relativistic astrophysics. J. Comput. Phys. 312, 333–356 (2016)MathSciNet
62.
Zurück zum Zitat Wilson, J.R.: Numerical study of fluid flow in a Kerr space. Astrophys. J. 173, 431 (1972) Wilson, J.R.: Numerical study of fluid flow in a Kerr space. Astrophys. J. 173, 431 (1972)
63.
Zurück zum Zitat Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)MathSciNet Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)MathSciNet
64.
Zurück zum Zitat Wu, K.: Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics. Phys. Rev. D 95, 103001 (2017)MathSciNet Wu, K.: Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics. Phys. Rev. D 95, 103001 (2017)MathSciNet
65.
Zurück zum Zitat Wu, K.: Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics. SIAM J. Sci. Comput. 43, B1164–B1197 (2021)MathSciNet Wu, K.: Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics. SIAM J. Sci. Comput. 43, B1164–B1197 (2021)MathSciNet
66.
Zurück zum Zitat Wu, K., Shu, C.-W.: Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations. SIAM J. Sci. Comput. 42, A2230–A2261 (2020)MathSciNet Wu, K., Shu, C.-W.: Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations. SIAM J. Sci. Comput. 42, A2230–A2261 (2020)MathSciNet
67.
Zurück zum Zitat Wu, K., Shu, C.-W.: Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. Numerische Mathematik 1, 1–43 (2021)MathSciNet Wu, K., Shu, C.-W.: Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. Numerische Mathematik 1, 1–43 (2021)MathSciNet
68.
Zurück zum Zitat Wu, K., Shu, C.-W.: Geometric quasilinearization framework for analysis and design of bound-preserving schemes. SIAM Rev. 65, 1031–1073 (2023)MathSciNet Wu, K., Shu, C.-W.: Geometric quasilinearization framework for analysis and design of bound-preserving schemes. SIAM Rev. 65, 1031–1073 (2023)MathSciNet
69.
Zurück zum Zitat Wu, K., Tang, H.: High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539–564 (2015)MathSciNet Wu, K., Tang, H.: High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539–564 (2015)MathSciNet
70.
Zurück zum Zitat Wu, K., Tang, H.: Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 27, 1871–1928 (2017)MathSciNet Wu, K., Tang, H.: Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 27, 1871–1928 (2017)MathSciNet
71.
Zurück zum Zitat Wu, K., Tang, H.: Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state. Astrophys. J. Suppl. Ser. 228, 3 (2017) Wu, K., Tang, H.: Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state. Astrophys. J. Suppl. Ser. 228, 3 (2017)
72.
Zurück zum Zitat Zhang, W., MacFadyen, A.I.: RAM: A relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164, 255 (2006) Zhang, W., MacFadyen, A.I.: RAM: A relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164, 255 (2006)
73.
Zurück zum Zitat Zhao, J., Tang, H.: Runge–Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics. J. Comput. Phys. 242, 138–168 (2013)MathSciNet Zhao, J., Tang, H.: Runge–Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics. J. Comput. Phys. 242, 138–168 (2013)MathSciNet
74.
Zurück zum Zitat Zhao, W.: Strictly convex entropy and entropy stable schemes for reactive Euler equations. Math. Comput. 91, 735–760 (2022)MathSciNet Zhao, W.: Strictly convex entropy and entropy stable schemes for reactive Euler equations. Math. Comput. 91, 735–760 (2022)MathSciNet
Metadaten
Titel
High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State
verfasst von
Linfeng Xu
Shengrong Ding
Kailiang Wu
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2024
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02440-x

Weitere Artikel der Ausgabe 2/2024

Journal of Scientific Computing 2/2024 Zur Ausgabe

Premium Partner