Skip to main content

2019 | OriginalPaper | Buchkapitel

High Performance Partial Coherent X-Ray Ptychography

verfasst von : Pablo Enfedaque, Huibin Chang, Bjoern Enders, David Shapiro, Stefano Marchesini

Erschienen in: Computational Science – ICCS 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the last century, X-ray science has enabled breakthrough discoveries in fields as diverse as medicine, material science or electronics, and recently, ptychography has risen as a reference imaging technique in the field. It provides resolutions of a billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. The goal of ptychography is to reconstruct a 2D visualization of a sample from a collection of diffraction patterns generated from the interaction of a light source with the sample. Reconstruction involves solving a nonlinear optimization problem employing a large amount of measured data—typically two orders of magnitude bigger than the reconstructed sample—so high performance solutions are normally required. A common problem in ptychography is that the majority of the flux from the light sources is often discarded to define the coherence of an illumination. Gradient Decomposition of the Probe (GDP) is a novel method devised to address this issue. It provides the capability to significantly improve the quality of the image when partial coherence effects take place, at the expense of a three-fold increase of the memory requirements and computation. This downside, along with the fine-grained degree of parallelism of the operations involved in GDP, makes it an ideal target for GPU acceleration. In this paper we propose the first high performance implementation of GDP for partial coherence X-ray ptychography. The proposed solution exploits an efficient data layout and multi-gpu parallelism to achieve massive acceleration and efficient scaling. The experimental results demonstrate the enhanced reconstruction quality and performance of our solution, able process up to 4 million input samples per second on a single high-end workstation, and compare its performance with a reference HPC ptychography pipeline.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Algorithm 1 presents a simplified outline of the method. Multiple operations and memory structures regarding regularization terms, stabilizers, background removal optimization, etc. have been omitted for simplicity.
 
2
Note that normalization may be required afterwards.
 
Literatur
1.
Zurück zum Zitat Rodenburg, J.M.: Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008)CrossRef Rodenburg, J.M.: Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008)CrossRef
2.
Zurück zum Zitat Shi, X., et al.: Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo\(_5\) films. Appl. Phys. Lett. 108(9), 094103 (2016)CrossRef Shi, X., et al.: Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo\(_5\) films. Appl. Phys. Lett. 108(9), 094103 (2016)CrossRef
3.
Zurück zum Zitat Giewekemeyer, K., et al.: Quantitative biological imaging by ptychographic x-ray diffraction microscopy. Proc. Nat. Acad. Sci. 107(2), 529–534 (2010)CrossRef Giewekemeyer, K., et al.: Quantitative biological imaging by ptychographic x-ray diffraction microscopy. Proc. Nat. Acad. Sci. 107(2), 529–534 (2010)CrossRef
4.
Zurück zum Zitat Shapiro, D.A., et al.: Chemical composition mapping with nanometre resolution by soft x-ray microscopy. Nat. Photonics 8(10), 765–769 (2014)CrossRef Shapiro, D.A., et al.: Chemical composition mapping with nanometre resolution by soft x-ray microscopy. Nat. Photonics 8(10), 765–769 (2014)CrossRef
5.
Zurück zum Zitat Holler, M., et al.: High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543(7645), 402–406 (2017)CrossRef Holler, M., et al.: High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543(7645), 402–406 (2017)CrossRef
6.
Zurück zum Zitat Chang, H., Enfedaque, P., Lou, Y., Marchesini, S.: Partially coherent ptychography by gradient decomposition of the probe. Acta Crystallogr. Sect. A: Found. Adv. 74(3), 157–169 (2018)MathSciNetCrossRef Chang, H., Enfedaque, P., Lou, Y., Marchesini, S.: Partially coherent ptychography by gradient decomposition of the probe. Acta Crystallogr. Sect. A: Found. Adv. 74(3), 157–169 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Marchesini, S., et al.: SHARP: a distributed, GPU-based ptychographic solver. J. Appl. Crystallogr. 49(4), 1245–1252 (2016)CrossRef Marchesini, S., et al.: SHARP: a distributed, GPU-based ptychographic solver. J. Appl. Crystallogr. 49(4), 1245–1252 (2016)CrossRef
8.
Zurück zum Zitat Nashed, Y.S., Vine, D.J., Peterka, T., Deng, J., Ross, R., Jacobsen, C.: Parallel ptychographic reconstruction. Opt. Express 22(26), 32 082–32 097 (2014)CrossRef Nashed, Y.S., Vine, D.J., Peterka, T., Deng, J., Ross, R., Jacobsen, C.: Parallel ptychographic reconstruction. Opt. Express 22(26), 32 082–32 097 (2014)CrossRef
10.
Zurück zum Zitat Thibault, P., Dierolf, M., Bunk, O., Menzel, A., Pfeiffer, F.: Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109(4), 338–343 (2009)CrossRef Thibault, P., Dierolf, M., Bunk, O., Menzel, A., Pfeiffer, F.: Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109(4), 338–343 (2009)CrossRef
11.
Zurück zum Zitat Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 1256–1262 (2009)CrossRef Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 1256–1262 (2009)CrossRef
12.
Zurück zum Zitat Elser, V.: Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20(1), 40–55 (2003)CrossRef Elser, V.: Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20(1), 40–55 (2003)CrossRef
13.
Zurück zum Zitat Thibault, P., Guizar-Sicairos, M.: Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14(6), 063004 (2012)CrossRef Thibault, P., Guizar-Sicairos, M.: Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14(6), 063004 (2012)CrossRef
14.
Zurück zum Zitat Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM J. Imaging Sci. 8(1), 426–457 (2015)MathSciNetCrossRef Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM J. Imaging Sci. 8(1), 426–457 (2015)MathSciNetCrossRef
15.
Zurück zum Zitat Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37–50 (2005)MathSciNetCrossRef Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37–50 (2005)MathSciNetCrossRef
16.
Zurück zum Zitat Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)CrossRef Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)CrossRef
17.
Zurück zum Zitat Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods and split-Bregman iterations for ROF, vectorial TV and higher order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)MathSciNetCrossRef Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods and split-Bregman iterations for ROF, vectorial TV and higher order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)MathSciNetCrossRef
Metadaten
Titel
High Performance Partial Coherent X-Ray Ptychography
verfasst von
Pablo Enfedaque
Huibin Chang
Bjoern Enders
David Shapiro
Stefano Marchesini
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22734-0_4

Premium Partner