Skip to main content
Erschienen in: Journal of Electroceramics 1-4/2016

28.04.2016

High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics

verfasst von: Ling Yang, Jiwen Xu, Qingning Li, Weidong Zeng, Changrong Zhou, Changlai Yuan, Guohua Chen, Guanghui Rao

Erschienen in: Journal of Electroceramics | Ausgabe 1-4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural origin of high piezoelectricity in perovskite-type relaxor ferroelectrics is a fundamental issue that remains elusive for decades. In this study, high and unstable piezoelectricity for the poled ceramics, accompanied with a crossover from a nonergodic relaxor to an ergodic relaxor state at room temperature, has been observed for 0.95(Bi0.5Na0.5)1-x (Li0.5Sm0.5) x TiO3–0.05BaTiO3 ceramics with x = 0.06. The result suggests that the high piezoelectric activity origins from the electric field-induced-ordered nanodomains. The rapid loss of piezoelectricity stems from the reversibility of the ordered nanodomains after removing applied electric field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)CrossRef Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)CrossRef
3.
Zurück zum Zitat K. Uchino, Relaxor ferroelectric devices. Ferroelectrics 151, 321 (1994)CrossRef K. Uchino, Relaxor ferroelectric devices. Ferroelectrics 151, 321 (1994)CrossRef
4.
Zurück zum Zitat J. Cieminski, H. Beige, High-signal electrostriction in ferroelectric materials. J. Phys. D. Appl. Phys. 24, 1182 (1991)CrossRef J. Cieminski, H. Beige, High-signal electrostriction in ferroelectric materials. J. Phys. D. Appl. Phys. 24, 1182 (1991)CrossRef
5.
Zurück zum Zitat A. G. Khachaturyan, Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states. Philos. Mag. 90, 37 (2010)CrossRef A. G. Khachaturyan, Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states. Philos. Mag. 90, 37 (2010)CrossRef
6.
Zurück zum Zitat Y. Yan, A. Kumar, M. Correa, K. -H. Cho, R. S. Katiyar, S. Priya, Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 152902 (2012) Y. Yan, A. Kumar, M. Correa, K. -H. Cho, R. S. Katiyar, S. Priya, Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 152902 (2012)
7.
Zurück zum Zitat A. A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31 (2006)CrossRef A. A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31 (2006)CrossRef
8.
Zurück zum Zitat D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 062906 (2010)CrossRef D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 062906 (2010)CrossRef
9.
Zurück zum Zitat Y. -Z. Wang, L. Chen, H. -Y. Wang, X. F. Zhang, J. Fu, X. -M. Xiong, J. -X. Zhang, Development of “fragility” in relaxor ferroelectrics. J. Appl. Phys. 115, 054106 (2014) Y. -Z. Wang, L. Chen, H. -Y. Wang, X. F. Zhang, J. Fu, X. -M. Xiong, J. -X. Zhang, Development of “fragility” in relaxor ferroelectrics. J. Appl. Phys. 115, 054106 (2014)
10.
Zurück zum Zitat L. Xie, Y. L. Li, R. Xu, Z. Y. Cheng, X. Y. Wei, X. Yao, C. L. Jia, K. Urban, A. A. Bokov, Z. -G. Ye, J. Zhu, Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-x Sn x )O3 system at high temperature. Phys. Rev. B 85, 014118 (2012) L. Xie, Y. L. Li, R. Xu, Z. Y. Cheng, X. Y. Wei, X. Yao, C. L. Jia, K. Urban, A. A. Bokov, Z. -G. Ye, J. Zhu, Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-x Sn x )O3 system at high temperature. Phys. Rev. B 85, 014118 (2012)
11.
Zurück zum Zitat J. Rödel, W. Jo, C. T. P. Seifert, E.-M. Anton, T. Granzow, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009)CrossRef J. Rödel, W. Jo, C. T. P. Seifert, E.-M. Anton, T. Granzow, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009)CrossRef
12.
Zurück zum Zitat T. R. Shout, S. J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113 (2007)CrossRef T. R. Shout, S. J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113 (2007)CrossRef
13.
Zurück zum Zitat S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett. 91, 112906(2007) S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett. 91, 112906(2007)
14.
Zurück zum Zitat H. -S. Han, W. Jo, J. –K, Kang, C.-W Ahn, I. W. Kim, K. -K. Ahn, and J. –S. Lee, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J. Appl. Phys. 113, 154102 (2013) H. -S. Han, W. Jo, J. –K, Kang, C.-W Ahn, I. W. Kim, K. -K. Ahn, and J. –S. Lee, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J. Appl. Phys. 113, 154102 (2013)
15.
Zurück zum Zitat T. Takenaka, Piezoelectric properties of some lead-free ferroelectric ceramics. Ferroelectrics 230, 87 (2011)CrossRef T. Takenaka, Piezoelectric properties of some lead-free ferroelectric ceramics. Ferroelectrics 230, 87 (2011)CrossRef
16.
Zurück zum Zitat J. Shi, H. Fan, X. Liu, and Q. Li, Ferroelectric hysteresis loop scaling and electric-field-induced strain of Bi0.5Na0.5TiO3–BaTiO3 ceramics, Phys. Status Solidi A 211, 2388(2014). J. Shi, H. Fan, X. Liu, and Q. Li, Ferroelectric hysteresis loop scaling and electric-field-induced strain of Bi0.5Na0.5TiO3–BaTiO3 ceramics, Phys. Status Solidi A 211, 2388(2014).
17.
Zurück zum Zitat J. Shi, H. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x (Bi0.2Sr0.7□0.1) x Ba0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675 (2014)CrossRef J. Shi, H. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x (Bi0.2Sr0.70.1) x Ba0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675 (2014)CrossRef
18.
Zurück zum Zitat J. Shi, H. Fan, X. Liu, and Q. Li, Defect-dipole alignment and strain memory effect in poled Li doped (Bi0.5Na0.4K0.1)0.98Ce0.02TiO3 ceramics, J. Mater. Sci: Mater. Electron. 26, 9409(2015) J. Shi, H. Fan, X. Liu, and Q. Li, Defect-dipole alignment and strain memory effect in poled Li doped (Bi0.5Na0.4K0.1)0.98Ce0.02TiO3 ceramics, J. Mater. Sci: Mater. Electron. 26, 9409(2015)
19.
Zurück zum Zitat Ng. Quyet, L. H. Bac, D. Odkhuu, and D. D. Dung, Effect of Li2CO3 addition on the structural, optical, ferroelectric, and electric-field-induced strain of lead-free BNKT-based ceramics, J. Phys. Chem. Solid. 85, 148(2015). Ng. Quyet, L. H. Bac, D. Odkhuu, and D. D. Dung, Effect of Li2CO3 addition on the structural, optical, ferroelectric, and electric-field-induced strain of lead-free BNKT-based ceramics, J. Phys. Chem. Solid. 85, 148(2015).
20.
Zurück zum Zitat D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285 (2012)CrossRef D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285 (2012)CrossRef
21.
Zurück zum Zitat R. Theissmann, R. L. A. Schmitt, J. Kling, R. Schierholz, K. A. Schönau, H. Fuess, M. Knapp, H. Kungl, M. J. Hoffmann, Nanodomains in morphotropic lead zirconate titanate ceramics: on the origin of the strong piezoelectric effect. J. Appl. Phys. 102, 024111 (2007)CrossRef R. Theissmann, R. L. A. Schmitt, J. Kling, R. Schierholz, K. A. Schönau, H. Fuess, M. Knapp, H. Kungl, M. J. Hoffmann, Nanodomains in morphotropic lead zirconate titanate ceramics: on the origin of the strong piezoelectric effect. J. Appl. Phys. 102, 024111 (2007)CrossRef
22.
Zurück zum Zitat Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J. Appl. Phys. 94, 3629 (2003)CrossRef Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J. Appl. Phys. 94, 3629 (2003)CrossRef
23.
Zurück zum Zitat H. Guo, C. Ma, X. Liu, X. Tan, Electrical poling below coercive field for large piezoelectricity. Appl. Phys. Lett. 102, 092902 (2013)CrossRef H. Guo, C. Ma, X. Liu, X. Tan, Electrical poling below coercive field for large piezoelectricity. Appl. Phys. Lett. 102, 092902 (2013)CrossRef
24.
Zurück zum Zitat D. Xue, Y. Zhou, J. Gao, X. Ding, X. Ren, A comparison between tetragonal-rhombohedral and tetragonal-orthorhombic phase boundaries on piezoelectricity enhancement. EPL 100, 17010 (2012)CrossRef D. Xue, Y. Zhou, J. Gao, X. Ding, X. Ren, A comparison between tetragonal-rhombohedral and tetragonal-orthorhombic phase boundaries on piezoelectricity enhancement. EPL 100, 17010 (2012)CrossRef
25.
Zurück zum Zitat J. Fu, R. Zuo, Z. Xu, High piezoelectric activity in (Na, K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains. Appl. Phys. Lett. 99, 062901 (2011)CrossRef J. Fu, R. Zuo, Z. Xu, High piezoelectric activity in (Na, K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains. Appl. Phys. Lett. 99, 062901 (2011)CrossRef
26.
Zurück zum Zitat T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Enhanced electromechanical response of ferroelectrics duo to charged domain walls. Nat. Commun. 3, 748 (2012)CrossRef T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Enhanced electromechanical response of ferroelectrics duo to charged domain walls. Nat. Commun. 3, 748 (2012)CrossRef
27.
Zurück zum Zitat L. -F. Wang, J. -M. Liu, Piezoelectric and ferroelectric cluster size in relaxor ferroelectrics. Appl. Phys. Lett. 91, 092908 (2007) L. -F. Wang, J. -M. Liu, Piezoelectric and ferroelectric cluster size in relaxor ferroelectrics. Appl. Phys. Lett. 91, 092908 (2007)
28.
Zurück zum Zitat R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Domain-size dependence of piezoelectric properties of ferroelectrics. Phys. Rev. B 72, 014112 (2005)CrossRef R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Domain-size dependence of piezoelectric properties of ferroelectrics. Phys. Rev. B 72, 014112 (2005)CrossRef
29.
Zurück zum Zitat W. Zeng, X. Zhou, J. Chen, J. Liao, C. Zhou, Z. Cen, T. Yang, H. Yang, Q. Zhou, G. Chen, C. Yuan, Origin of high piezoelectric activity in perovskite ferroelectric ceramics. Appl. Phys. Lett. 104, 242910 (2014)CrossRef W. Zeng, X. Zhou, J. Chen, J. Liao, C. Zhou, Z. Cen, T. Yang, H. Yang, Q. Zhou, G. Chen, C. Yuan, Origin of high piezoelectric activity in perovskite ferroelectric ceramics. Appl. Phys. Lett. 104, 242910 (2014)CrossRef
30.
Zurück zum Zitat R. Garg, B. N. Rao, A. Senyshyn, P. S. R. Krishna, and R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact, Phys. Rev. B 88, 014103 (2013). R. Garg, B. N. Rao, A. Senyshyn, P. S. R. Krishna, and R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact, Phys. Rev. B 88, 014103 (2013).
31.
Zurück zum Zitat J. E. Daniels, W. Jo, J. Rödel, and J. L. Jones, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in 93 %(Bi0.5Na0.5)TiO3–7 % BaTiO3 piezoelectric ceramic, Appl. Phys. Lett. 95, 032904 (2009). J. E. Daniels, W. Jo, J. Rödel, and J. L. Jones, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in 93 %(Bi0.5Na0.5)TiO3–7 % BaTiO3 piezoelectric ceramic, Appl. Phys. Lett. 95, 032904 (2009).
32.
Zurück zum Zitat W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. -J. Kleebe, A. J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3 -6 mol % BaTiO3. J. Appl. Phys. 110, 074106 (2011) W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. -J. Kleebe, A. J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3 -6 mol % BaTiO3. J. Appl. Phys. 110, 074106 (2011)
33.
Zurück zum Zitat T. -Y. Kim, H. M. Jang, B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3. Appl. Phys. Lett. 77(3824) (2000) T. -Y. Kim, H. M. Jang, B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3. Appl. Phys. Lett. 77(3824) (2000)
34.
Zurück zum Zitat C. Lei, A. A. Bokov, Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram the BaTiO3-BaSnO3 system. J. Appl. Phys. 101(084105) (2007) C. Lei, A. A. Bokov, Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram the BaTiO3-BaSnO3 system. J. Appl. Phys. 101(084105) (2007)
35.
Zurück zum Zitat Y. Liu, R. L. Withers, B. Nguyen, Structurally frustrated polar nanoregions in BaTiO3-based relaxor. Appl. Phys. Lett. 91, 152907 (2007)CrossRef Y. Liu, R. L. Withers, B. Nguyen, Structurally frustrated polar nanoregions in BaTiO3-based relaxor. Appl. Phys. Lett. 91, 152907 (2007)CrossRef
36.
Zurück zum Zitat W. Kleemann, Random field in relaxor ferroelectrics-a jubilee review. J. Adv. Dielectric 2, 1241001 (2012)CrossRef W. Kleemann, Random field in relaxor ferroelectrics-a jubilee review. J. Adv. Dielectric 2, 1241001 (2012)CrossRef
37.
Zurück zum Zitat W. Zhao, Zuo, J. Fu, and M. Shi, Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5 )O3–PbTiO3 –(Bi0.5 Na0.5)TiO3 ternary system, J. Eur. Ceram. Soc. 34, 2299 (2014) W. Zhao, Zuo, J. Fu, and M. Shi, Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5 )O3–PbTiO3 –(Bi0.5 Na0.5)TiO3 ternary system, J. Eur. Ceram. Soc. 34, 2299 (2014)
Metadaten
Titel
High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics
verfasst von
Ling Yang
Jiwen Xu
Qingning Li
Weidong Zeng
Changrong Zhou
Changlai Yuan
Guohua Chen
Guanghui Rao
Publikationsdatum
28.04.2016
Verlag
Springer US
Erschienen in
Journal of Electroceramics / Ausgabe 1-4/2016
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-016-0036-z

Weitere Artikel der Ausgabe 1-4/2016

Journal of Electroceramics 1-4/2016 Zur Ausgabe

Neuer Inhalt