Skip to main content
Erschienen in: Journal of Polymer Research 6/2021

01.06.2021 | ORIGINAL PAPER

High-strength nanocomposite self-regenerating hydrogels reinforced by additional crosslinking with trivalent metal cations

verfasst von: Beata Strachota, Adam Strachota, Gabriela Gąsior, Miroslav Šlouf

Erschienen in: Journal of Polymer Research | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, doubly physically crosslinked hydrogels were synthesized, based on poly(N-isopropylacrylamide) containing 10 mol% of methacrylate co-monomer, in which nano-platelets of hectorite clay acted as the primary strong physical crosslinker, and trivalent cations La3+, Fe3+, and Al3+ as an additional dynamic one. Due to their excellent mechanical and tensile properties, such gels might be of interest as advanced structural materials for soft robotics. Of especial scientific interest was the comparison of the seemingly similar trivalent cations embedded in analogous gels, where their different bonding to carboxylate made dramatic differences concerning the material properties: La3+—purely electrostatic and highly dynamic bonding, Fe3+—with tendency to coordination-covalent-, and Al3+—with a rather covalent bonding. The cations incorporated into the hydrogels caused a marked, or even very strong improvement of tensile toughness, which in case of La3+ occurred without reducing the extensibility. All the cations expectedly raised the modulus: the effect was most pronounced with Al3+, which tends to covalent bonding. Most importantly, all the cations improved the kinetics of internal self-healing (self-recovery) of the gels, which was fastest with the dynamically (purely electrostatically) bonding La3+ (complete recovery of properties in 1 h). All the cations were incorporated via impregnation of precursor gels. An original synthesis aspect was, that the impregnation was conducted for a brief period of time, which was found necessary to achieve maximum modulus (the modulus dropped again at longer times). In this way, a non-stoichiometric (usually sub-stoichiometric) amount was incorporated, which made a subsequent extraction of cation excess unnecessary. Additionally, the non-stoichiometry helped the self-healing (network reorganization), which was most striking in case of the rather covalently bonding Al-impregnated gel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRef Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRef
2.
Zurück zum Zitat Li Z, Chen L, Xu M, Ma Y, Chen L, Dai F (2020) Double crosslinking hydrogel with tunable properties for potential biomedical application. J Polym Res 27:262CrossRef Li Z, Chen L, Xu M, Ma Y, Chen L, Dai F (2020) Double crosslinking hydrogel with tunable properties for potential biomedical application. J Polym Res 27:262CrossRef
5.
6.
Zurück zum Zitat Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822CrossRef Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822CrossRef
7.
Zurück zum Zitat Tanaka Y, Fukao K, Miyamoto Y (2000) Fracture energy of gels. Eur Phys J E 3:395–401CrossRef Tanaka Y, Fukao K, Miyamoto Y (2000) Fracture energy of gels. Eur Phys J E 3:395–401CrossRef
8.
Zurück zum Zitat Lin WC, Fan W, Marcellan A, Hourdet D, Creton C (2010) Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43:2554–2563CrossRef Lin WC, Fan W, Marcellan A, Hourdet D, Creton C (2010) Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43:2554–2563CrossRef
9.
Zurück zum Zitat Strachota B, Šlouf M, Matějka L (2017) Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym Int 66:1510–1521CrossRef Strachota B, Šlouf M, Matějka L (2017) Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym Int 66:1510–1521CrossRef
10.
Zurück zum Zitat Lutecki M, Strachotová B, Uchman M, Brus J, Pleštil J, Šlouf M, Strachota A, Matějka L (2006) Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym J 38:527–541CrossRef Lutecki M, Strachotová B, Uchman M, Brus J, Pleštil J, Šlouf M, Strachota A, Matějka L (2006) Thermosensitive PNIPA-based organic-inorganic hydrogels. Polym J 38:527–541CrossRef
11.
Zurück zum Zitat Xu B, Li H, Wang Y, Zhang G, Zhang Q (2013) Nanocomposite hydrogels with high strength cross-linked by titania. RSC Adv 3:7233–7236CrossRef Xu B, Li H, Wang Y, Zhang G, Zhang Q (2013) Nanocomposite hydrogels with high strength cross-linked by titania. RSC Adv 3:7233–7236CrossRef
12.
Zurück zum Zitat Huerta Angeles G, Hishchak K, Strachota A, Strachota B, Šlouf M, Matějka L (2014) Super-porous nanocomposite PNIPAmhydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur Polym J 59:341–352CrossRef Huerta Angeles G, Hishchak K, Strachota A, Strachota B, Šlouf M, Matějka L (2014) Super-porous nanocomposite PNIPAmhydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur Polym J 59:341–352CrossRef
13.
Zurück zum Zitat Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef
14.
Zurück zum Zitat Fei X, Xu S, Feng S, Lin JL, Lin JT, Shi XM, Wang JD (2011) Mechanically strengthened double network composite hydrogels with high water content: a preliminary study. J Polym Res 18:1131–1136CrossRef Fei X, Xu S, Feng S, Lin JL, Lin JT, Shi XM, Wang JD (2011) Mechanically strengthened double network composite hydrogels with high water content: a preliminary study. J Polym Res 18:1131–1136CrossRef
15.
Zurück zum Zitat Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136PubMedPubMedCentralCrossRef Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane crosslinkers and ionic groups into the polymer network. Nat Commun 5:5124PubMedCrossRef Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane crosslinkers and ionic groups into the polymer network. Nat Commun 5:5124PubMedCrossRef
17.
Zurück zum Zitat Song GS, Zhang L, He CC, Fang DC, Whitten PG, Wang HL (2013) Facile fabrication of tough hydrogels physically cross- linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef Song GS, Zhang L, He CC, Fang DC, Whitten PG, Wang HL (2013) Facile fabrication of tough hydrogels physically cross- linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef
18.
Zurück zum Zitat Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules 42:6245–6252CrossRef Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules 42:6245–6252CrossRef
19.
Zurück zum Zitat Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef
20.
Zurück zum Zitat Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54CrossRef Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54CrossRef
21.
Zurück zum Zitat Haraguchi K, Li HJ, Xu Y, Li G (2016) Copolymer nanocomposite hydrogels: Unique tensile mechanical properties and network structures. Polymer 96:94–103CrossRef Haraguchi K, Li HJ, Xu Y, Li G (2016) Copolymer nanocomposite hydrogels: Unique tensile mechanical properties and network structures. Polymer 96:94–103CrossRef
22.
Zurück zum Zitat Strachota B, Matějka L, Zhigunov A, Konefał R, Spěváček J, Dybal J, Puffr R (2015) Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation. Soft Matter 11:9291–9306PubMedCrossRef Strachota B, Matějka L, Zhigunov A, Konefał R, Spěváček J, Dybal J, Puffr R (2015) Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation. Soft Matter 11:9291–9306PubMedCrossRef
23.
Zurück zum Zitat Strachota B, Hodan J, Matějka L (2016) Poly(N-isopropylacrylamide)–clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur Polymer J 77:1–15CrossRef Strachota B, Hodan J, Matějka L (2016) Poly(N-isopropylacrylamide)–clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur Polymer J 77:1–15CrossRef
24.
Zurück zum Zitat Gao L, Sun Y, Zhang W, Li DS, Hou CL, Liu YQ (2015) Mechanical behavior of a terpolymer-based pH- and temperature-responsive hydrogel. J Polym Res 22:221CrossRef Gao L, Sun Y, Zhang W, Li DS, Hou CL, Liu YQ (2015) Mechanical behavior of a terpolymer-based pH- and temperature-responsive hydrogel. J Polym Res 22:221CrossRef
25.
Zurück zum Zitat Okay O (2020) How to design both mechanically strong and self-healable hydrogels? Adv Polym Sci 285:21–62CrossRef Okay O (2020) How to design both mechanically strong and self-healable hydrogels? Adv Polym Sci 285:21–62CrossRef
26.
Zurück zum Zitat Cromwell OR, Chung J, Guan Z (2015) Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J Am Chem Soc 137:6492–6495PubMedCrossRef Cromwell OR, Chung J, Guan Z (2015) Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J Am Chem Soc 137:6492–6495PubMedCrossRef
27.
Zurück zum Zitat Li S, Gao Y, Jiang H, Duan L, Gao G (2018) Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohydr Polym 201:591–598PubMedCrossRef Li S, Gao Y, Jiang H, Duan L, Gao G (2018) Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohydr Polym 201:591–598PubMedCrossRef
28.
Zurück zum Zitat Miao T, Fenn SL, Charron PN, Oldinski RA (2015) Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromol 16:3740–3750CrossRef Miao T, Fenn SL, Charron PN, Oldinski RA (2015) Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromol 16:3740–3750CrossRef
29.
Zurück zum Zitat Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef
30.
Zurück zum Zitat Du J, Chen P, Adalati A, Xu SM, Wu RL, Wang JD, Zhang C (2014) Preparation and mechanical properties of a transparent ionic nanocomposite hydrogel. J Polym Res 21:541CrossRef Du J, Chen P, Adalati A, Xu SM, Wu RL, Wang JD, Zhang C (2014) Preparation and mechanical properties of a transparent ionic nanocomposite hydrogel. J Polym Res 21:541CrossRef
31.
Zurück zum Zitat Shi LY, Ding PH, Wang YZ, Zhang Y, Ossipov D, Hilborn J (2019) Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun 40:1800837CrossRef Shi LY, Ding PH, Wang YZ, Zhang Y, Ossipov D, Hilborn J (2019) Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun 40:1800837CrossRef
32.
Zurück zum Zitat Wei ZJ, He J, Liang T, Oh H, Athas J, Tong Z, Wang CY, Nie ZH (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605CrossRef Wei ZJ, He J, Liang T, Oh H, Athas J, Tong Z, Wang CY, Nie ZH (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605CrossRef
33.
Zurück zum Zitat Lin P, Ma SH, Wang XL, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059PubMedCrossRef Lin P, Ma SH, Wang XL, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059PubMedCrossRef
34.
Zurück zum Zitat Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules 49:9637–9646CrossRef Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules 49:9637–9646CrossRef
35.
Zurück zum Zitat Hu Y, Du Z, Deng X, Wang T, Yang Z, Zhou W, Wang C (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668CrossRef Hu Y, Du Z, Deng X, Wang T, Yang Z, Zhou W, Wang C (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668CrossRef
36.
Zurück zum Zitat Xue S, Wu Y, Guo M, Liu D, Zhang T, Lei W (2018) Fabrication of poly(acrylic acid)/boron nitride composite hydrogels with excellent mechanical properties and rapid self-healing through hierarchically physical interactions. Nanoscale Res Lett 13:393PubMedPubMedCentralCrossRef Xue S, Wu Y, Guo M, Liu D, Zhang T, Lei W (2018) Fabrication of poly(acrylic acid)/boron nitride composite hydrogels with excellent mechanical properties and rapid self-healing through hierarchically physical interactions. Nanoscale Res Lett 13:393PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Li N, Chen GX, Chen W, Huang JH, Tian JF, Wan XF, He MH, Zhang HF (2017) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydr Polym 178:159–165PubMedCrossRef Li N, Chen GX, Chen W, Huang JH, Tian JF, Wan XF, He MH, Zhang HF (2017) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydr Polym 178:159–165PubMedCrossRef
38.
Zurück zum Zitat Ding HY, Liang XX, Zhang XN, Wu ZL, Li ZJ, Sun GX (2019) Tough supramolecular hydrogels with excellent self-recovery behavior mediated by metal-coordination interaction. Polymer 171:201–210CrossRef Ding HY, Liang XX, Zhang XN, Wu ZL, Li ZJ, Sun GX (2019) Tough supramolecular hydrogels with excellent self-recovery behavior mediated by metal-coordination interaction. Polymer 171:201–210CrossRef
39.
Zurück zum Zitat Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B (2017) Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 126:196–205CrossRef Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B (2017) Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 126:196–205CrossRef
40.
Zurück zum Zitat Cao J, Li J, Chen Y, Zhang L, Zhou J (2018) Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv Func Mater 28:1800739CrossRef Cao J, Li J, Chen Y, Zhang L, Zhou J (2018) Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv Func Mater 28:1800739CrossRef
41.
Zurück zum Zitat Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W (2015) Preparation and self-healing behaviors of poly(acrylic acid)/cerium ions double network hydrogels. Macromol Res 23:1098–1102CrossRef Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W (2015) Preparation and self-healing behaviors of poly(acrylic acid)/cerium ions double network hydrogels. Macromol Res 23:1098–1102CrossRef
42.
Zurück zum Zitat Richens DT (2005) Ligand substitution reactions at inorganic centers. Chem Rev 105:1961–2002PubMedCrossRef Richens DT (2005) Ligand substitution reactions at inorganic centers. Chem Rev 105:1961–2002PubMedCrossRef
43.
Zurück zum Zitat Ilavský M (1993) Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. Adv Polym Sci 109:173–206CrossRef Ilavský M (1993) Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. Adv Polym Sci 109:173–206CrossRef
Metadaten
Titel
High-strength nanocomposite self-regenerating hydrogels reinforced by additional crosslinking with trivalent metal cations
verfasst von
Beata Strachota
Adam Strachota
Gabriela Gąsior
Miroslav Šlouf
Publikationsdatum
01.06.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 6/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02575-1

Weitere Artikel der Ausgabe 6/2021

Journal of Polymer Research 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.