Skip to main content
Erschienen in: Journal of Materials Science 21/2015

01.11.2015 | Original Paper

High-temperature resistivity of aluminum–carbon nanotube composites

verfasst von: V. Genova, D. Gozzi, A. Latini

Erschienen in: Journal of Materials Science | Ausgabe 21/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The resistivity and thermal coefficient of resistivity (TCR), of metallic matrix composites, MMCs, aluminum–carbon nanotube, Al-CNT, were studied under high vacuum in the temperature interval from RT to 800 K. The samples shaped as small cylinders and containing single-walled CNTs or multi-walled CNTs were sintered at 625 °C. The resistivity of sintered samples of pure Al was found three orders of magnitude higher with respect to bulk, having the former a density value equal to 98.8 % of bulk Al. The explored range of the CNT concentration was within 5 wt%. At the highest CNT concentrations, the trend of resistivity against temperature was found negative being more pronounced for composites with MWCNTs. For Al-SWCNT composites, at around 3.3 wt% (4.2 vol%), TCR is practically independent from temperature; for Al-MWCNT, the TCR zero-crossing occurs at different compositions depending on temperature. Higher is the temperature, lower is the TCR zero-crossing composition. Resistivity data were discussed in the framework of the Matthiessen’s rule and sound evidences were shown that no Al4C3 formation was detected at working temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sahoo NG, Li L (2013) Carbon nanotube-reinforced polymer composites for aerospace application. In: Zhang S, Zhao D (eds) Aerospace Materials Handbook. CRC Press, Boca Raton, pp 493–552 Sahoo NG, Li L (2013) Carbon nanotube-reinforced polymer composites for aerospace application. In: Zhang S, Zhao D (eds) Aerospace Materials Handbook. CRC Press, Boca Raton, pp 493–552
2.
Zurück zum Zitat Unterweger C, Brueggemann O, Fuerst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236CrossRef Unterweger C, Brueggemann O, Fuerst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236CrossRef
3.
Zurück zum Zitat Zare Y, Garmabi H (2014) Attempts to simulate the modulus of polymer/carbon nanotube nanocomposites and future trends. Polym Rev 54:377–400CrossRef Zare Y, Garmabi H (2014) Attempts to simulate the modulus of polymer/carbon nanotube nanocomposites and future trends. Polym Rev 54:377–400CrossRef
4.
Zurück zum Zitat Wang W, Liao S, Liu M, Zhao Q, Zhu Y (2014) Polymer composites reinforced by nanotubes as scaffolds for tissue engineering, Int J Polym Sci 805634/1-805634/14 Wang W, Liao S, Liu M, Zhao Q, Zhu Y (2014) Polymer composites reinforced by nanotubes as scaffolds for tissue engineering, Int J Polym Sci 805634/1-805634/14
5.
Zurück zum Zitat Bai Q, Mei H, Ji T, Sun Y, Li H, Cheng L (2014) Mechanical properties of carbon nanotube reinforced composites: a review. Ceram Trans 248:167–178 Bai Q, Mei H, Ji T, Sun Y, Li H, Cheng L (2014) Mechanical properties of carbon nanotube reinforced composites: a review. Ceram Trans 248:167–178
6.
Zurück zum Zitat Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef
7.
Zurück zum Zitat Silvestre N (2013) State-of-the-art review on carbon nanotube reinforced metal matrix composites. Int J Compos Mater 3:28–44 Silvestre N (2013) State-of-the-art review on carbon nanotube reinforced metal matrix composites. Int J Compos Mater 3:28–44
8.
Zurück zum Zitat Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev 55:41–64CrossRef Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev 55:41–64CrossRef
9.
Zurück zum Zitat Gozzi D, Latini A, Lazzarini L (2009) Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles. J Am Chem Soc 131:12474–12482CrossRef Gozzi D, Latini A, Lazzarini L (2009) Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles. J Am Chem Soc 131:12474–12482CrossRef
10.
Zurück zum Zitat Gozzi D, Latini A, Lazzarini L (2008) Chemical differentiation of carbon nanotubes in a carbonaceous matrix. Chem Mater 20:4126–4134CrossRef Gozzi D, Latini A, Lazzarini L (2008) Chemical differentiation of carbon nanotubes in a carbonaceous matrix. Chem Mater 20:4126–4134CrossRef
11.
Zurück zum Zitat Zhang L, Hashimoto Y, Taishi T, Qing-Qing Ni Q-Q (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257:1845–1849CrossRef Zhang L, Hashimoto Y, Taishi T, Qing-Qing Ni Q-Q (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257:1845–1849CrossRef
12.
Zurück zum Zitat Latini A, Tomellini M, Lazzarini L, Bertoni G, Gazzoli D et al (2014) High temperature stability of onion-like carbon vs highly oriented pyrolytic graphite. PLoS One 9:e105788–e105802CrossRef Latini A, Tomellini M, Lazzarini L, Bertoni G, Gazzoli D et al (2014) High temperature stability of onion-like carbon vs highly oriented pyrolytic graphite. PLoS One 9:e105788–e105802CrossRef
13.
Zurück zum Zitat Desai PD, James HM, Ho CY (1984) Electrical resistivity of aluminum and manganese. J Phys Chem Ref Data 13:1131–1172CrossRef Desai PD, James HM, Ho CY (1984) Electrical resistivity of aluminum and manganese. J Phys Chem Ref Data 13:1131–1172CrossRef
14.
Zurück zum Zitat Latini A, Gozzi D, Ferraris G, Lazzarini L (2011) High-temperature resistivity of dense mats of single-walled carbon nanotube bundles. J Phys Chem C 115:11023–11029CrossRef Latini A, Gozzi D, Ferraris G, Lazzarini L (2011) High-temperature resistivity of dense mats of single-walled carbon nanotube bundles. J Phys Chem C 115:11023–11029CrossRef
15.
Zurück zum Zitat Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef
16.
Zurück zum Zitat Landry K, Kalogeropoulou S, Eustathopoulos N (1998) Wettability of carbon by aluminum and aluminum alloys. Mater Sci Eng A A254:99–111CrossRef Landry K, Kalogeropoulou S, Eustathopoulos N (1998) Wettability of carbon by aluminum and aluminum alloys. Mater Sci Eng A A254:99–111CrossRef
17.
Zurück zum Zitat Tham LM, Gupta M, Cheng L (2001) Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater 49:3243–3253CrossRef Tham LM, Gupta M, Cheng L (2001) Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater 49:3243–3253CrossRef
18.
Zurück zum Zitat King WR, Dorward RC (1985) Electrical resistivity of aluminum carbide at 990-1240 K. J Electrochem Soc 132:388–389CrossRef King WR, Dorward RC (1985) Electrical resistivity of aluminum carbide at 990-1240 K. J Electrochem Soc 132:388–389CrossRef
19.
Zurück zum Zitat International Center for Diffraction Data, data base JCPDS CARD = 79-1736 International Center for Diffraction Data, data base JCPDS CARD = 79-1736
20.
Zurück zum Zitat IVTANTHERMO for Windows, v.3.0 (2005) Database of thermodynamic properties of individual substances and thermodynamic modeling software. Glushko Thermocenter of RAS IVTANTHERMO for Windows, v.3.0 (2005) Database of thermodynamic properties of individual substances and thermodynamic modeling software. Glushko Thermocenter of RAS
Metadaten
Titel
High-temperature resistivity of aluminum–carbon nanotube composites
verfasst von
V. Genova
D. Gozzi
A. Latini
Publikationsdatum
01.11.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9263-y

Weitere Artikel der Ausgabe 21/2015

Journal of Materials Science 21/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.