Skip to main content

2020 | OriginalPaper | Buchkapitel

Highly Accurate and Memory Efficient Unsupervised Learning-Based Discrete CT Registration Using 2.5D Displacement Search

verfasst von : Mattias P. Heinrich, Lasse Hansen

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning-based registration, in particular unsupervised approaches that use a deep network to predict a displacement field that minimise a conventional similarity metric, has gained huge interest within the last two years. It has, however, not yet reached the high accuracy of specialised conventional algorithms for estimating large 3D deformations. Employing a dense set of discrete displacements (in a so-called correlation layer) has shown great success in learning 2D optical flow estimation, cf. FlowNet and PWC-Net, but comes at excessive memory requirements when extended to 3D medical registration. We propose a highly accurate unsupervised learning framework for 3D abdominal CT registration that uses a discrete displacement layer and a contrast-invariant metric (MIND descriptors) that is evaluated in a probabilistic fashion. We realise a substantial reduction in memory and computational demand by iteratively subdividing the 3D search space into orthogonal planes. In our experimental validation on inter-subject deformable 3D registration, we demonstrate substantial improvements in accuracy (at least \(\approx \)10% points Dice) compared to widely used conventional methods (ANTs SyN, NiftyReg, IRTK) and state-of-the-art U-Net based learning methods (VoxelMorph). We reduce the search space 5-fold, speed-up the run-time twice and are on-par in terms of accuracy with a fully 3D discrete network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imag. (2019) Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imag. (2019)
6.
Zurück zum Zitat Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82CrossRef Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00928-1_​82CrossRef
7.
Zurück zum Zitat Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of ICCV, pp. 2758–2766 (2015) Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of ICCV, pp. 2758–2766 (2015)
8.
Zurück zum Zitat Eppenhof, K.A., Lafarge, M.W., Veta, M., Pluim, J.P.: Progressively trained convolutional neural networks for deformable image registration. IEEE Trans. Med. Imag. (2019) Eppenhof, K.A., Lafarge, M.W., Veta, M., Pluim, J.P.: Progressively trained convolutional neural networks for deformable image registration. IEEE Trans. Med. Imag. (2019)
9.
Zurück zum Zitat Eppenhof, K.A., Pluim, J.P.: Pulmonary CT registration through supervised learning with convolutional neural networks. IEEE Trans. Med. Imag. 38(5), 1097–1105 (2018)CrossRef Eppenhof, K.A., Pluim, J.P.: Pulmonary CT registration through supervised learning with convolutional neural networks. IEEE Trans. Med. Imag. 38(5), 1097–1105 (2018)CrossRef
10.
Zurück zum Zitat Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)CrossRef Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)CrossRef
12.
Zurück zum Zitat Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)CrossRef Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)CrossRef
13.
Zurück zum Zitat Heinrich, M.P., Oktay, O., Bouteldja, N.: OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)CrossRef Heinrich, M.P., Oktay, O., Bouteldja, N.: OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)CrossRef
14.
Zurück zum Zitat Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24CrossRef Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-40811-3_​24CrossRef
16.
Zurück zum Zitat Hering, A., Kuckertz, S., Heldmann, S., Heinrich, M.P.: Memory-efficient 2.5 D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans. Int. J. Comput. Assist. Radiol. Surg. 14(11), 1901–1912 (2019) Hering, A., Kuckertz, S., Heldmann, S., Heinrich, M.P.: Memory-efficient 2.5 D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans. Int. J. Comput. Assist. Radiol. Surg. 14(11), 1901–1912 (2019)
17.
Zurück zum Zitat Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imag. 38(9), 2165–2176 (2019)CrossRef Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imag. 38(9), 2165–2176 (2019)CrossRef
18.
Zurück zum Zitat Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Patt. Anal. Mach. Intell. 33(5), 978–994 (2010)CrossRef Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Patt. Anal. Mach. Intell. 33(5), 978–994 (2010)CrossRef
20.
Zurück zum Zitat Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRef Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRef
22.
Zurück zum Zitat Rühaak, J., et al.: Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans. Med. Imag. 36(8), 1746–1757 (2017)CrossRef Rühaak, J., et al.: Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans. Med. Imag. 36(8), 1746–1757 (2017)CrossRef
23.
Zurück zum Zitat Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imag. 35(5), 1160–1169 (2016)CrossRef Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imag. 35(5), 1160–1169 (2016)CrossRef
24.
Zurück zum Zitat Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid image matching. Comput. Vis. Image Und. 112(1), 91–99 (2008)CrossRef Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid image matching. Comput. Vis. Image Und. 112(1), 91–99 (2008)CrossRef
25.
Zurück zum Zitat Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)CrossRef Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)CrossRef
26.
Zurück zum Zitat Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of CVPR, pp. 8934–8943 (2018) Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of CVPR, pp. 8934–8943 (2018)
27.
Zurück zum Zitat Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: Proceedings of CVPR, vol. 2, pp. 384–390. IEEE (2005) Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: Proceedings of CVPR, vol. 2, pp. 384–390. IEEE (2005)
28.
Zurück zum Zitat de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)CrossRef de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)CrossRef
29.
Zurück zum Zitat Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imag. 23(7), 903–921 (2004)CrossRef Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imag. 23(7), 903–921 (2004)CrossRef
30.
Zurück zum Zitat Xu, Z., et al.: Evaluation of 6 registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)CrossRef Xu, Z., et al.: Evaluation of 6 registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)CrossRef
31.
Zurück zum Zitat Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of ICCV, pp. 1529–1537 (2015) Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of ICCV, pp. 1529–1537 (2015)
32.
Zurück zum Zitat Zikic, D., et al.: Linear intensity-based image registration by Markov random fields and discrete optimization. Med. Image Anal. 14(4), 550–562 (2010)CrossRef Zikic, D., et al.: Linear intensity-based image registration by Markov random fields and discrete optimization. Med. Image Anal. 14(4), 550–562 (2010)CrossRef
Metadaten
Titel
Highly Accurate and Memory Efficient Unsupervised Learning-Based Discrete CT Registration Using 2.5D Displacement Search
verfasst von
Mattias P. Heinrich
Lasse Hansen
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59716-0_19

Premium Partner