Skip to main content
Erschienen in: Journal of Materials Science 26/2020

19.05.2020 | Energy materials

Highly ordered carbon nanotubes to improve the conductivity of LiNi0.8Co0.15Al0.05O2 for Li-ion batteries

verfasst von: Feng Tian, Wei Nie, Shengwen Zhong, Xiaolin Liu, Xiaodong Tang, Miaomiao Zhou, Qiankun Guo, Shun Hu

Erschienen in: Journal of Materials Science | Ausgabe 26/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The low electronic conductivity of the cathode in rechargeable Li-ion batteries results in a large overpotential at high charge/discharge rate and reduces the power density of the batteries. Here, vertically aligned carbon nanotubes (VACNTs), which exhibited a higher purity and a better rate of dispersion than the agglomerated carbon nanotubes (ACNTs), were synthesized to improve the electronic conductivity of the cathode and to optimize the performance of the batteries at high rates. 1.5 wt% of the VACNTs in LiNi0.8Co0.15Al0.05O2 (LNCA) is sufficient to build an electronic conductive network, and the cell exhibited an improved performance with a high capacity of 167.4 and 157.5 mAh g−1 at 5 C and 10 C, respectively; moreover, the cell showed a good cycling stability with a capacity retention of 85.2% after 120 cycles at 1 C, which is much better than the cell with ACNTs and even better than the cell with a uniformly dispersed ACNTs slurry. The prepared 0.6 Ah pouch cell with only 0.5 wt% VACNTs and 1 wt% Super P (SP) in the cathode displayed better cycling and rate performance than the cell with 3 wt% SP in the electrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025CrossRef Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025CrossRef
2.
Zurück zum Zitat Tang YX, Zhang YY, Li WL, Ma B, Chen XD (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44:5926–5940CrossRef Tang YX, Zhang YY, Li WL, Ma B, Chen XD (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44:5926–5940CrossRef
3.
Zurück zum Zitat Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRef Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRef
4.
Zurück zum Zitat Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013CrossRef Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013CrossRef
5.
Zurück zum Zitat Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of lithium-ion batteries: a review. J Power Sour 306:178–192CrossRef Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of lithium-ion batteries: a review. J Power Sour 306:178–192CrossRef
6.
Zurück zum Zitat Wen LZ, Sun JC, An LW, Wang XY (2018) Effect of conductive material morphology on spherical lithium iron phosphate. Nanomaterials 8:904CrossRef Wen LZ, Sun JC, An LW, Wang XY (2018) Effect of conductive material morphology on spherical lithium iron phosphate. Nanomaterials 8:904CrossRef
7.
Zurück zum Zitat Lee MJ, Lho E, Bai P, Chae SJ, Li J, Cho J (2017) Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-Ion batteries. Nano Lett 17:3744–3751CrossRef Lee MJ, Lho E, Bai P, Chae SJ, Li J, Cho J (2017) Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-Ion batteries. Nano Lett 17:3744–3751CrossRef
8.
Zurück zum Zitat Wei XF, Guan YB, Zheng XH, Zhu QZ, Shen JR, Qiao N, Zhou SQ, Xu B (2018) Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Appl Surf Sci 440:748–754CrossRef Wei XF, Guan YB, Zheng XH, Zhu QZ, Shen JR, Qiao N, Zhou SQ, Xu B (2018) Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Appl Surf Sci 440:748–754CrossRef
9.
Zurück zum Zitat Hasegawa K, Noda S (2016) Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils. J Power Sour 321:155–162CrossRef Hasegawa K, Noda S (2016) Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils. J Power Sour 321:155–162CrossRef
10.
Zurück zum Zitat Tang R, Yun QB, Lv W, He YB, You CH, Su FY, Ke L, Li BH, Kang FY, Yang QH (2016) How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon 103:356–362CrossRef Tang R, Yun QB, Lv W, He YB, You CH, Su FY, Ke L, Li BH, Kang FY, Yang QH (2016) How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon 103:356–362CrossRef
11.
Zurück zum Zitat Ning GQ, Zhang SC, Xiao ZH, Wang HB, Ma XL (2018) Efficient conducting networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes. Carbon 132:323–328CrossRef Ning GQ, Zhang SC, Xiao ZH, Wang HB, Ma XL (2018) Efficient conducting networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes. Carbon 132:323–328CrossRef
12.
Zurück zum Zitat Zhou FD, Qiu KH, Peng GC, Xia L (2015) Silver/carbon nanotube hybrids: a novel conductive network for high-rate lithium ion batteries. Electrochim Acta 151:16–20CrossRef Zhou FD, Qiu KH, Peng GC, Xia L (2015) Silver/carbon nanotube hybrids: a novel conductive network for high-rate lithium ion batteries. Electrochim Acta 151:16–20CrossRef
13.
Zurück zum Zitat Wang K, Wu Y, Luo S, He XF, Wang JP, Jiang KL, Fan SS (2013) Hybrid super-aligned carbon nanotube/carbon black conductive networks: a strategy to improve both electrical conductivity and capacity for lithium ion batteries. J Power Sour 233:209–215CrossRef Wang K, Wu Y, Luo S, He XF, Wang JP, Jiang KL, Fan SS (2013) Hybrid super-aligned carbon nanotube/carbon black conductive networks: a strategy to improve both electrical conductivity and capacity for lithium ion batteries. J Power Sour 233:209–215CrossRef
14.
Zurück zum Zitat He MS, Wang X, Zhang LL, Wu QR, Song XJ, Chernov AI, Fedotov PV, Obraztsova ED, Sainio J, Jiang H, Cui HZ, Ding F, Kauppineng E (2018) Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon 128:249–256CrossRef He MS, Wang X, Zhang LL, Wu QR, Song XJ, Chernov AI, Fedotov PV, Obraztsova ED, Sainio J, Jiang H, Cui HZ, Ding F, Kauppineng E (2018) Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon 128:249–256CrossRef
15.
Zurück zum Zitat Zheng LB, Wang YX, Qin JJ, Wang XH, Lu RJ, Qu C, Wang CG (2018) Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum 152:84–90CrossRef Zheng LB, Wang YX, Qin JJ, Wang XH, Lu RJ, Qu C, Wang CG (2018) Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum 152:84–90CrossRef
17.
Zurück zum Zitat Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602CrossRef Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602CrossRef
18.
Zurück zum Zitat Avramescu ML, Rasmussen PE, Chénier M (2016) Determination of metal impurities in carbon nanotubes sampled using surface wipes. J Anal Methods Chem 10:3834292 Avramescu ML, Rasmussen PE, Chénier M (2016) Determination of metal impurities in carbon nanotubes sampled using surface wipes. J Anal Methods Chem 10:3834292
19.
Zurück zum Zitat Wei F, Zhang Q, Qian WZ, Yu H, Wang Y, Luo GH, Xu GH, Wang DZ (2008) The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space–time analysis. Powder Technol 183:10–20CrossRef Wei F, Zhang Q, Qian WZ, Yu H, Wang Y, Luo GH, Xu GH, Wang DZ (2008) The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space–time analysis. Powder Technol 183:10–20CrossRef
20.
Zurück zum Zitat Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654CrossRef Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654CrossRef
21.
Zurück zum Zitat Ling XL, Wei YZ, Zou LM, Xu S (2013) The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Appl Surf Sci 276:159–166CrossRef Ling XL, Wei YZ, Zou LM, Xu S (2013) The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Appl Surf Sci 276:159–166CrossRef
22.
Zurück zum Zitat Andrews R, Jacques D, Qian D, Dickey EC (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39:1681–1687CrossRef Andrews R, Jacques D, Qian D, Dickey EC (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39:1681–1687CrossRef
23.
Zurück zum Zitat Varzi A, Täubert C, Wohlfahrt-Mehrens M (2012) The effects of pristine and carboxylated multi-walled carbon nanotubes as conductive additives on the performance of LiNi0.33Co0.33Mn0.33O2 and LiFePO4 positive electrodes. Electrochim Acta 78:17–26CrossRef Varzi A, Täubert C, Wohlfahrt-Mehrens M (2012) The effects of pristine and carboxylated multi-walled carbon nanotubes as conductive additives on the performance of LiNi0.33Co0.33Mn0.33O2 and LiFePO4 positive electrodes. Electrochim Acta 78:17–26CrossRef
24.
Zurück zum Zitat Wu FY, Cheng HM (2005) Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J Phys D Appl Phys 38:4302CrossRef Wu FY, Cheng HM (2005) Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J Phys D Appl Phys 38:4302CrossRef
25.
Zurück zum Zitat Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Disper Sci Technol 24:1–41CrossRef Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Disper Sci Technol 24:1–41CrossRef
26.
Zurück zum Zitat Kumar A, Pushparaj VL, Kar S, Nalamasu O, Ajayan PM (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett 89:163120CrossRef Kumar A, Pushparaj VL, Kar S, Nalamasu O, Ajayan PM (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett 89:163120CrossRef
27.
Zurück zum Zitat He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219CrossRef He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219CrossRef
28.
Zurück zum Zitat Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef
Metadaten
Titel
Highly ordered carbon nanotubes to improve the conductivity of LiNi0.8Co0.15Al0.05O2 for Li-ion batteries
verfasst von
Feng Tian
Wei Nie
Shengwen Zhong
Xiaolin Liu
Xiaodong Tang
Miaomiao Zhou
Qiankun Guo
Shun Hu
Publikationsdatum
19.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 26/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04809-x

Weitere Artikel der Ausgabe 26/2020

Journal of Materials Science 26/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.