Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2018

19.04.2018

Highly selective and efficient room temperature NO2 gas sensors based on Zn-doped CuO nanostructure-rGO hybrid

verfasst von: Jyoti, A. K. Srivastava, G. D. Varma

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work nanostructures of Zn-doped CuO with nominal compositions Cu1−xZnxO (x = 0, 0.03, 0.05, 0.07, 0.10, 0.15) have been synthesized via wet chemical method. The field-emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) results show the formation of 1-D nanochain type morphology in pristine CuO and the same is retained up to Zn doping of 7% (x = 0.07). However, for higher Zn doping (x > 0.07) microflower type morphology is observed. The thin films of the as-synthesized pristine and Zn-doped CuO-reduced graphene oxide (rGO) hybrid materials have been fabricated by drop casting method on glass substrates to study their electrical and gas sensing behavior. The temperature dependent resistance measurements confirm semiconducting behavior of the hybrid films. The gas sensing performances of all hybrid films for NO2 gas have been systematically investigated. The results demonstrate that Zn doping in CuO remarkably increases the gas sensing response as compared to pristine CuO. For example, 5% Zn-doped CuO-rGO hybrid sensor shows percentage response of ~ 54.5, whereas pristine CuO-rGO hybrid sensor shows percentage response of ~ 19.6. Furthermore, sensing performance of hybrid films initially increases with increasing x up to x = 0.07 and after this it starts decreasing with x. The measurements of sensing response for x = 0.05 in the temperature range 296–343 K for 40 ppm NO2 exhibit maximum response at room temperature (296 K) and the lowest detection limit of ~ 6 ppm NO2. Moreover, the hybrid sensors exhibit almost negligible response to other gases like CO, NH3, H2S and Cl2 at room temperature, indicating their excellent selectivity towards NO2 gas. The detail correlations between the microstructural characteristics of Zn doped CuO nanostructures and gas sensing behavior of the corresponding hybrid films have been discussed and described in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000) R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)
2.
Zurück zum Zitat D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004) D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004)
3.
Zurück zum Zitat L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018) L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)
4.
Zurück zum Zitat C. Wang, W. Zeng, New insights into multi-hierarchical nanostructures with size controllable blocking units for their gas sensing performance. J. Mater. Sci. 28, 10847–10852 (2017) C. Wang, W. Zeng, New insights into multi-hierarchical nanostructures with size controllable blocking units for their gas sensing performance. J. Mater. Sci. 28, 10847–10852 (2017)
5.
Zurück zum Zitat P.-G. Su, T.-T. Pan, Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method. Mater. Chem. Phys. 125, 351–357 (2011) P.-G. Su, T.-T. Pan, Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method. Mater. Chem. Phys. 125, 351–357 (2011)
6.
Zurück zum Zitat W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, Y. Qin, Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. J. Alloys Compd. 679, 391–399 (2016) W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, Y. Qin, Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. J. Alloys Compd. 679, 391–399 (2016)
7.
Zurück zum Zitat A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Phys. B 406, 144–149 (2011) A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Phys. B 406, 144–149 (2011)
8.
Zurück zum Zitat C. Yang, F. Xiao, J. Wang, X. Su, 3D flower- and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sens. Actuators B 207, 177–185 (2015) C. Yang, F. Xiao, J. Wang, X. Su, 3D flower- and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sens. Actuators B 207, 177–185 (2015)
9.
Zurück zum Zitat B.J. Hansen, N. Kouklin, G. Lu, I.-K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114, 2440–2447 (2010) B.J. Hansen, N. Kouklin, G. Lu, I.-K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114, 2440–2447 (2010)
10.
Zurück zum Zitat O. Akhavan, E. Ghaderi, Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors. J. Mater. Chem. 21, 12935 (2011) O. Akhavan, E. Ghaderi, Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors. J. Mater. Chem. 21, 12935 (2011)
11.
Zurück zum Zitat C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens. Actuators B 158, 299–303 (2011) C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens. Actuators B 158, 299–303 (2011)
12.
Zurück zum Zitat Y. Yu, Y. Xia, W. Zeng, R. Liu, Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Mater. Lett. 206, 80–83 (2017) Y. Yu, Y. Xia, W. Zeng, R. Liu, Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Mater. Lett. 206, 80–83 (2017)
13.
Zurück zum Zitat N.D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim, S.-K. Hong, Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens. Actuators B 146, 266–272 (2010) N.D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim, S.-K. Hong, Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens. Actuators B 146, 266–272 (2010)
14.
Zurück zum Zitat L. Zhu, W. Zeng, H. Ye, Y. Li, Volatile organic compound sensing based on coral rock-like ZnO. Mater. Res. Bull. 100, 259–264 (2018) L. Zhu, W. Zeng, H. Ye, Y. Li, Volatile organic compound sensing based on coral rock-like ZnO. Mater. Res. Bull. 100, 259–264 (2018)
15.
Zurück zum Zitat D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H.L. Tuller, J.A. Varela, The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 23, 1759–1766 (2013) D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H.L. Tuller, J.A. Varela, The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 23, 1759–1766 (2013)
16.
Zurück zum Zitat S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sens. Actuators B 122, 204–210 (2007) S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sens. Actuators B 122, 204–210 (2007)
17.
Zurück zum Zitat R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017) R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)
18.
Zurück zum Zitat Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sens. Actuators B 134, 36–42 (2008) Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sens. Actuators B 134, 36–42 (2008)
19.
Zurück zum Zitat F.M. Li, X.B. Li, S.Y. Ma, L. Chen, W.Q. Li, C.T. Zhu, X.L. Xu, Y. Chen, Y.F. Li, G. Lawson, Influence of Ce doping on microstructure of ZnO nanoparticles and their acetone sensing properties. J. Alloys Compd. 649, 1136–1144 (2015) F.M. Li, X.B. Li, S.Y. Ma, L. Chen, W.Q. Li, C.T. Zhu, X.L. Xu, Y. Chen, Y.F. Li, G. Lawson, Influence of Ce doping on microstructure of ZnO nanoparticles and their acetone sensing properties. J. Alloys Compd. 649, 1136–1144 (2015)
20.
Zurück zum Zitat G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor-nanostructured ZnO:Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015) G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor-nanostructured ZnO:Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015)
21.
Zurück zum Zitat J. Li, X. Liu, J. Sun, One step solvothermal synthesis of urchin-like ZnO nanorods/graphene hollow spheres and their NO2 gas sensing properties. Ceram. Int. 42, 2085–2090 (2016) J. Li, X. Liu, J. Sun, One step solvothermal synthesis of urchin-like ZnO nanorods/graphene hollow spheres and their NO2 gas sensing properties. Ceram. Int. 42, 2085–2090 (2016)
22.
Zurück zum Zitat X. Jiea, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu, C. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens. Actuators B 220, 201–209 (2015) X. Jiea, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu, C. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens. Actuators B 220, 201–209 (2015)
23.
Zurück zum Zitat Y. Yang, C. Tian, L. Sun, R. Lu, W. Zhou, K. Shi, K. Kan, J. Wang, H. Fu, Growth of small sized CeO2 particles in the interlayers of expanded graphite for high-performance room temperature NOx gas sensors. J. Mater. Chem. A 1, 12742–12749 (2013) Y. Yang, C. Tian, L. Sun, R. Lu, W. Zhou, K. Shi, K. Kan, J. Wang, H. Fu, Growth of small sized CeO2 particles in the interlayers of expanded graphite for high-performance room temperature NOx gas sensors. J. Mater. Chem. A 1, 12742–12749 (2013)
24.
Zurück zum Zitat F. Gu, R. Nie, D. Han, Z. Wang, In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015) F. Gu, R. Nie, D. Han, Z. Wang, In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015)
25.
Zurück zum Zitat H. Zhanga, L. Yu, Q. Li, Y. Du, S. Ruan, Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017) H. Zhanga, L. Yu, Q. Li, Y. Du, S. Ruan, Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)
26.
Zurück zum Zitat M. Kodu, A. Berholts, T. Kahro, T. Avarmaa, A. Kasikov, A. Niilisk, H. Alles, R. Jaaniso, Highly sensitive NO2 sensors by pulsed laser deposition on graphene. Appl. Phys. Lett. 109, 113108 (2016) M. Kodu, A. Berholts, T. Kahro, T. Avarmaa, A. Kasikov, A. Niilisk, H. Alles, R. Jaaniso, Highly sensitive NO2 sensors by pulsed laser deposition on graphene. Appl. Phys. Lett. 109, 113108 (2016)
27.
Zurück zum Zitat S. Novikova, N. Lebedeva, A. Satrapinski, J. Walden, V. Davydov, A. Lebedev, Graphene based sensor for environmental monitoring of NO2. Sens. Actuators B 236, 1054–1060 (2016) S. Novikova, N. Lebedeva, A. Satrapinski, J. Walden, V. Davydov, A. Lebedev, Graphene based sensor for environmental monitoring of NO2. Sens. Actuators B 236, 1054–1060 (2016)
28.
Zurück zum Zitat V. Blechta, M. Mergl, K. Drogowska, V. Valeš, M. Kalbáč, NO2 sensor with a graphite nanopowder working electrode. Sens. Actuators B 226, 299–304 (2016) V. Blechta, M. Mergl, K. Drogowska, V. Valeš, M. Kalbáč, NO2 sensor with a graphite nanopowder working electrode. Sens. Actuators B 226, 299–304 (2016)
29.
Zurück zum Zitat M. Shaik, V.K. Rao, M. Gupta, K.S.R.C. Murthy, R. Jain, Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Adv. 6, 1527–1534 (2016) M. Shaik, V.K. Rao, M. Gupta, K.S.R.C. Murthy, R. Jain, Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Adv. 6, 1527–1534 (2016)
30.
Zurück zum Zitat M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166–167, 172–176 (2012) M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166–167, 172–176 (2012)
31.
Zurück zum Zitat Y. Sun, D. Zhang, H. Chang, Y. Zhang, Fabrication of palladium–zinc oxide–reduced graphene oxide hybrid for hydrogen gas detection at low working temperature. J. Mater. Sci. 28, 1667–1673 (2017) Y. Sun, D. Zhang, H. Chang, Y. Zhang, Fabrication of palladium–zinc oxide–reduced graphene oxide hybrid for hydrogen gas detection at low working temperature. J. Mater. Sci. 28, 1667–1673 (2017)
32.
Zurück zum Zitat D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017) D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017)
33.
Zurück zum Zitat D. Zhang, Y. Sun, C. Jiang, Y. Yao, D. Wang, Y. Zhang, Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens. Actuators B 253, 1120–1128 (2017) D. Zhang, Y. Sun, C. Jiang, Y. Yao, D. Wang, Y. Zhang, Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens. Actuators B 253, 1120–1128 (2017)
34.
Zurück zum Zitat C. Jiang, D. Zhang, N. Yin, Y. Yao, T. Shaymurat, X. Zhou, Acetylene gas-sensing properties of layer-by-layer self-assembled Ag-decorated tin dioxide/graphene nanocomposite film. Nanomaterials 7, 278 (2017) C. Jiang, D. Zhang, N. Yin, Y. Yao, T. Shaymurat, X. Zhou, Acetylene gas-sensing properties of layer-by-layer self-assembled Ag-decorated tin dioxide/graphene nanocomposite film. Nanomaterials 7, 278 (2017)
35.
Zurück zum Zitat M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008) M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)
36.
Zurück zum Zitat Y.-M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008) Y.-M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008)
37.
Zurück zum Zitat F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007) F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)
38.
Zurück zum Zitat M.G. Sung, H. Lee, K. Heo, K.-E. Byun, T. Kim, D.H. Seo, S. Seo, S. Hong, Scanning noise microscopy on graphene devices. ACS Nano 5, 8620–8628 (2011) M.G. Sung, H. Lee, K. Heo, K.-E. Byun, T. Kim, D.H. Seo, S. Seo, S. Hong, Scanning noise microscopy on graphene devices. ACS Nano 5, 8620–8628 (2011)
39.
Zurück zum Zitat X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011) X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)
40.
Zurück zum Zitat Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, Humidity-sensing properties of urchinlike CuO nanostructure modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6, 3888 – 3895 (2014) Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, Humidity-sensing properties of urchinlike CuO nanostructure modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6, 3888 – 3895 (2014)
41.
Zurück zum Zitat S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917 (2012) S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917 (2012)
42.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010) D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)
43.
Zurück zum Zitat U.K. Gaur, A. Kumar, G.D. Varma, Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties. J. Mater. Chem. C 3, 4297–4307 (2015) U.K. Gaur, A. Kumar, G.D. Varma, Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties. J. Mater. Chem. C 3, 4297–4307 (2015)
44.
Zurück zum Zitat N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 1912–1923 (2015) N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 1912–1923 (2015)
45.
Zurück zum Zitat Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48, 1670–1692 (2010) Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48, 1670–1692 (2010)
46.
Zurück zum Zitat S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007) S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)
47.
Zurück zum Zitat K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, Single step fabrication of CuO–MnO–2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 7, 15885–15893 (2017) K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, Single step fabrication of CuO–MnO–2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 7, 15885–15893 (2017)
48.
Zurück zum Zitat D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, D. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114, 18347–18351 (2010) D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, D. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114, 18347–18351 (2010)
49.
Zurück zum Zitat M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007) M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)
50.
Zurück zum Zitat H. Hagemam, H. Bill, W. Sadowski, E. Walker, M. Francois, Raman spectra of single crystal CuO. Solid State Commun. 73, 447–451 (1990) H. Hagemam, H. Bill, W. Sadowski, E. Walker, M. Francois, Raman spectra of single crystal CuO. Solid State Commun. 73, 447–451 (1990)
51.
Zurück zum Zitat W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A 76, 417–420 (2003) W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A 76, 417–420 (2003)
52.
Zurück zum Zitat Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14, 6710–6719 (2012) Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14, 6710–6719 (2012)
53.
Zurück zum Zitat X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L.-J. Li, Symmetry breaking of graphene monolayers by molecular decoration. Phys. Rev. Lett. 102, 135501 (2009) X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L.-J. Li, Symmetry breaking of graphene monolayers by molecular decoration. Phys. Rev. Lett. 102, 135501 (2009)
54.
Zurück zum Zitat L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. .Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009) L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. .Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)
55.
Zurück zum Zitat S. Pisana, M. LazzeriI, C. Casiraghi, S. Kostya, A.K. Novoselov, A.C. Geim, F. Ferrari, Muari, Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007) S. Pisana, M. LazzeriI, C. Casiraghi, S. Kostya, A.K. Novoselov, A.C. Geim, F. Ferrari, Muari, Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)
56.
Zurück zum Zitat A. Venkatesan, S. Rathi, I.-Y. Lee, J. Park, D. Lim, G.-H. Kim, E.S. Kannan, Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure. Semicond. Sci. Technol. 31, 125014 (2016) A. Venkatesan, S. Rathi, I.-Y. Lee, J. Park, D. Lim, G.-H. Kim, E.S. Kannan, Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure. Semicond. Sci. Technol. 31, 125014 (2016)
57.
Zurück zum Zitat G. Venugopala, K. Krishnamoorthy, R. Mohan, S.-J. Kim, An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012) G. Venugopala, K. Krishnamoorthy, R. Mohan, S.-J. Kim, An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012)
58.
Zurück zum Zitat J.R. Hauptmann, T. Li, S. Petersen, J. Nygard, P. Hedegard, T. Bjørnholm, B.W. Laursen, K. Nørgaard, Electrical annealing and temperature dependent transversal conduction in multilayer reduced graphene oxide films for solid-state molecular devices. Phys. Chem. Chem. Phys. 14, 14277–14281 (2012) J.R. Hauptmann, T. Li, S. Petersen, J. Nygard, P. Hedegard, T. Bjørnholm, B.W. Laursen, K. Nørgaard, Electrical annealing and temperature dependent transversal conduction in multilayer reduced graphene oxide films for solid-state molecular devices. Phys. Chem. Chem. Phys. 14, 14277–14281 (2012)
59.
Zurück zum Zitat I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J. Alloys Compd. 722, 569–578 (2017) I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J. Alloys Compd. 722, 569–578 (2017)
60.
Zurück zum Zitat A. Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J. Am. Chem. Soc. 125, 11329–11333 (2003) A. Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J. Am. Chem. Soc. 125, 11329–11333 (2003)
61.
Zurück zum Zitat F. Yao, D.L. Duong, S.C. Lim, S.B. Yang, H.R. Hwang, W.J. Yu, I.H. Lee, F. Gunes, Y.H. Lee, Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. J. Mater. Chem. 21, 4502–4508 (2011) F. Yao, D.L. Duong, S.C. Lim, S.B. Yang, H.R. Hwang, W.J. Yu, I.H. Lee, F. Gunes, Y.H. Lee, Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. J. Mater. Chem. 21, 4502–4508 (2011)
62.
Zurück zum Zitat N. Kumar, B.K. Gupta, A.K. Srivastava, H.S. Patel, P. Kumar, I. Banerjee, T.N. Narayanan, G.D. Varma, Multifunctional two-dimensional reduced graphene oxide thin film for gas sensing and antibacterial applications. Sci. Adv. Mater. 7, 1–12 (2015) N. Kumar, B.K. Gupta, A.K. Srivastava, H.S. Patel, P. Kumar, I. Banerjee, T.N. Narayanan, G.D. Varma, Multifunctional two-dimensional reduced graphene oxide thin film for gas sensing and antibacterial applications. Sci. Adv. Mater. 7, 1–12 (2015)
63.
Zurück zum Zitat H. Zhang, Q. Li, J. Huang, Y. Du, S.C. Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors 16, 1152 (2016) H. Zhang, Q. Li, J. Huang, Y. Du, S.C. Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors 16, 1152 (2016)
64.
Zurück zum Zitat Y. Zhou, G. Liu, X. Zhu, Y. Guo, Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sens. Actuators B 251, 280–290 (2017) Y. Zhou, G. Liu, X. Zhu, Y. Guo, Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sens. Actuators B 251, 280–290 (2017)
65.
Zurück zum Zitat D. Zhang, J. Liu, B. Xia, Nitrogen dioxide-sensing properties at room temperature of metal oxide-modified graphene composite via one-step hydrothermal method. J. Electron. Mater. 45, 8 (2016) D. Zhang, J. Liu, B. Xia, Nitrogen dioxide-sensing properties at room temperature of metal oxide-modified graphene composite via one-step hydrothermal method. J. Electron. Mater. 45, 8 (2016)
66.
Zurück zum Zitat D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B 247, 875–882 (2017) D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B 247, 875–882 (2017)
67.
Zurück zum Zitat M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J. Phys. Chem. C 112, 19540–19546 (2008) M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J. Phys. Chem. C 112, 19540–19546 (2008)
68.
Zurück zum Zitat J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017) J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017)
69.
Zurück zum Zitat P. Vomáčka, V. Štengl, J. Henych, M. Kormunda, Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J. Colloid Interface Sci. 481, 28–38 (2016) P. Vomáčka, V. Štengl, J. Henych, M. Kormunda, Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J. Colloid Interface Sci. 481, 28–38 (2016)
Metadaten
Titel
Highly selective and efficient room temperature NO2 gas sensors based on Zn-doped CuO nanostructure-rGO hybrid
verfasst von
Jyoti
A. K. Srivastava
G. D. Varma
Publikationsdatum
19.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9128-7

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science: Materials in Electronics 12/2018 Zur Ausgabe

Neuer Inhalt