Skip to main content
Erschienen in: Journal of Materials Science 6/2020

13.11.2019 | Electronic materials

Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics

verfasst von: Kai Zhao, Wenbin Niu, Shufen Zhang

Erschienen in: Journal of Materials Science | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, wearable and stretchable electronic devices have attracted great research interest and effort due to their promising applications in electronic skin, wearable health monitoring, human–machine interactions and so on. However, it still remains a great challenge to fabricate highly stretchable and wearable devices with excellent breathability, mechanical robustness and laundering durability. Herein, we fabricated a highly stretchable and breathable textile strain sensor based on conductive polyester fabric (CPF) with weft-knitted structure by chemically growing conductive and transparent Al-doped ZnO (AZO) element via atomic layer deposition (ALD). The CPF strain sensor demonstrates captivating performance, including high stretchability (up to 130%) and long-term stability (3000 cycles), as well as a distinct negative resistance variation with increasing strain owing to its weft-knitted structure. Most importantly, due to the formation of chemical interactions between textiles and AZO films during ALD process, the CPF strain sensor exhibits excellent mechanical robustness and laundering durability under reciprocating rubbing (50 kPa load pressure, 30 cycles), washing (500 r/min for 10 cycles, 200 min) and light fastness (accelerated light aging test for 7 days), thus allowing the fabrication of breathable and comfortable wearable sensor without elastomer encapsulation. Based on its admirable performances, the CPF strain sensor can be easily knitted or sewed on garments or attached on human skin directly for tracking both large and subtle human motions, revealing its numerous prospects in wearable electronics, intelligent robotics and other fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698 Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698
2.
Zurück zum Zitat Liu Y, Pharr M, Salvatore GA (2017) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11:9614–9635 Liu Y, Pharr M, Salvatore GA (2017) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11:9614–9635
3.
Zurück zum Zitat Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607 Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607
4.
Zurück zum Zitat Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372 Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372
5.
Zurück zum Zitat Wang CY, Xia KL, Wang HM, Liang XP, Yin Z, Zhang YY (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:1801072 Wang CY, Xia KL, Wang HM, Liang XP, Yin Z, Zhang YY (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:1801072
6.
Zurück zum Zitat Du DH, Li PC, Ouyang JY (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4:3224–3230 Du DH, Li PC, Ouyang JY (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4:3224–3230
7.
Zurück zum Zitat Ma JH, Wang P, Chen HY, Bao SJ, Chen W, Lu HB (2019) Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl Mater Interfaces 11:8527–8536 Ma JH, Wang P, Chen HY, Bao SJ, Chen W, Lu HB (2019) Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl Mater Interfaces 11:8527–8536
8.
Zurück zum Zitat Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301 Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301
9.
Zurück zum Zitat Yao SS, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352 Yao SS, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352
10.
Zurück zum Zitat Yin B, Wen YW, Hong T, Xie ZS, Yuan GL, Ji QM, Jia HB (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9:32054–32064 Yin B, Wen YW, Hong T, Xie ZS, Yuan GL, Ji QM, Jia HB (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9:32054–32064
11.
Zurück zum Zitat Zhang HX, Niu WB, Zhang SF (2018) Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl Mater Interfaces 10:32640–32648 Zhang HX, Niu WB, Zhang SF (2018) Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl Mater Interfaces 10:32640–32648
12.
Zurück zum Zitat Li LH, Bai YY, Li LL, Wang SQ, Zhang T (2017) A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater 29:1702517 Li LH, Bai YY, Li LL, Wang SQ, Zhang T (2017) A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater 29:1702517
13.
Zurück zum Zitat Liu YQ, He K, Chen G, Leow WR, Chen XD (2017) Nature-inspired structural materials for flexible electronic devices. Chem Rev 117:12893–12941 Liu YQ, He K, Chen G, Leow WR, Chen XD (2017) Nature-inspired structural materials for flexible electronic devices. Chem Rev 117:12893–12941
14.
Zurück zum Zitat Yang TT, Wang W, Zhang HZ, Li XM, Shi JD, He YJ, Zheng QS, Li ZH, Zhu HW (2015) Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano 9:10867–10875 Yang TT, Wang W, Zhang HZ, Li XM, Shi JD, He YJ, Zheng QS, Li ZH, Zhu HW (2015) Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano 9:10867–10875
15.
Zurück zum Zitat Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–162 Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–162
16.
Zurück zum Zitat Wang CY, Li X, Gao EL, Jian MQ, Xia KL, Wang Q, Xu ZP, Ren TL, Zhang YY (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28:6640–6648 Wang CY, Li X, Gao EL, Jian MQ, Xia KL, Wang Q, Xu ZP, Ren TL, Zhang YY (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28:6640–6648
17.
Zurück zum Zitat Wang Y, Wang L, Yang TT, Li X, Zang XB, Zhu M, Wang KL, Wu DH, Zhu HW (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670 Wang Y, Wang L, Yang TT, Li X, Zang XB, Zhu M, Wang KL, Wu DH, Zhu HW (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670
18.
Zurück zum Zitat Liu X, Tang C, Du XH, Xiong SA, Xi SY, Liu YF, Shen X, Zheng QB, Wang ZY, Wu Y, Horner A, Kim JK (2017) A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater Horiz 4:477–486 Liu X, Tang C, Du XH, Xiong SA, Xi SY, Liu YF, Shen X, Zheng QB, Wang ZY, Wu Y, Horner A, Kim JK (2017) A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater Horiz 4:477–486
19.
Zurück zum Zitat Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261 Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261
20.
Zurück zum Zitat Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–8830 Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–8830
21.
Zurück zum Zitat Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401 Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401
22.
Zurück zum Zitat Liu H, Gao JC, Huang WJ, Dai K, Zheng GQ, Liu CT, Shen CY, Yan XR, Guo J, Guo ZH (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989 Liu H, Gao JC, Huang WJ, Dai K, Zheng GQ, Liu CT, Shen CY, Yan XR, Guo J, Guo ZH (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989
23.
Zurück zum Zitat Shi G, Zhao ZH, Pai JH, Lee I, Zhang LQ, Stevenson C, Ishara K, Zhang RJ, Zhu HW, Ma J (2016) Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater 26:7614–7625 Shi G, Zhao ZH, Pai JH, Lee I, Zhang LQ, Stevenson C, Ishara K, Zhang RJ, Zhu HW, Ma J (2016) Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater 26:7614–7625
24.
Zurück zum Zitat Liu ZY, Qi DP, Guo PZ, Liu Y, Zhu BW, Yang H, Liu YQ, Li B, Zhang CG, Yu JC, Liedberg B, Chen XD (2015) Thickness-gradient films for high gauge factor stretchable strain sensors. Adv Mater 27:6230–6237 Liu ZY, Qi DP, Guo PZ, Liu Y, Zhu BW, Yang H, Liu YQ, Li B, Zhang CG, Yu JC, Liedberg B, Chen XD (2015) Thickness-gradient films for high gauge factor stretchable strain sensors. Adv Mater 27:6230–6237
25.
Zurück zum Zitat Yan CY, Wang JX, Kang WB, Cui MQ, Wang X, Foo CY, Chee KJ, Lee PS (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26:2022–2027 Yan CY, Wang JX, Kang WB, Cui MQ, Wang X, Foo CY, Chee KJ, Lee PS (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26:2022–2027
26.
Zurück zum Zitat Zhang C, Li H, Huang A, Zhang Q, Rui K, Lin H, Sun G, Zhu J, Peng H, Huang W (2019) Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 15:e1805493 Zhang C, Li H, Huang A, Zhang Q, Rui K, Lin H, Sun G, Zhu J, Peng H, Huang W (2019) Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 15:e1805493
27.
Zurück zum Zitat Zhang MC, Wang CY, Wang HM, Jian MQ, Hao XY, Zhang YY (2017) Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater 27:1604795 Zhang MC, Wang CY, Wang HM, Jian MQ, Hao XY, Zhang YY (2017) Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater 27:1604795
28.
Zurück zum Zitat Kim SJ, Song W, Yi Y, Min BK, Mondal S, An KS, Choi CG (2018) High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl Mater Interfaces 10:3921–3928 Kim SJ, Song W, Yi Y, Min BK, Mondal S, An KS, Choi CG (2018) High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl Mater Interfaces 10:3921–3928
29.
Zurück zum Zitat Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang XA, Razal JM (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz 6:219–249 Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang XA, Razal JM (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz 6:219–249
30.
Zurück zum Zitat Souri H, Bhattacharyya D (2018) Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl Mater Interfaces 10:20845–20853 Souri H, Bhattacharyya D (2018) Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl Mater Interfaces 10:20845–20853
31.
Zurück zum Zitat Yang Z, Pang Y, Han XL, Yang YF, Ling J, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141 Yang Z, Pang Y, Han XL, Yang YF, Ling J, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141
32.
Zurück zum Zitat Cataldi P, Dussoni S, Ceseracciu L, Maggiali M, Natale L, Metta G, Athanassiou A, Bayer IS (2018) Carbon nanofiber versus graphene-based stretchable capacitive touch sensors for artificial electronic skin. Adv Sci 5:1700587 Cataldi P, Dussoni S, Ceseracciu L, Maggiali M, Natale L, Metta G, Athanassiou A, Bayer IS (2018) Carbon nanofiber versus graphene-based stretchable capacitive touch sensors for artificial electronic skin. Adv Sci 5:1700587
33.
Zurück zum Zitat Li MF, Li HY, Zhong WB, Zhao QH, Wang D (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6:1313–1319 Li MF, Li HY, Zhong WB, Zhao QH, Wang D (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6:1313–1319
34.
Zurück zum Zitat Wang X, Sparkman J, Gou J (2017) Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos Commun 3:1–6 Wang X, Sparkman J, Gou J (2017) Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos Commun 3:1–6
35.
Zurück zum Zitat Trung TQ, Dang TML, Ramasundaram S, Toi PT, Park SY, Lee NE (2019) A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl Mater Interfaces 11:2317–2327 Trung TQ, Dang TML, Ramasundaram S, Toi PT, Park SY, Lee NE (2019) A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl Mater Interfaces 11:2317–2327
36.
Zurück zum Zitat Cai GM, Yang MY, Xu ZL, Liu JG, Tang B, Wang XG (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403 Cai GM, Yang MY, Xu ZL, Liu JG, Tang B, Wang XG (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403
37.
Zurück zum Zitat Lee T, Lee W, Kim SW, Kim JJ, Kim BS (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 26:6206–6214 Lee T, Lee W, Kim SW, Kim JJ, Kim BS (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 26:6206–6214
38.
Zurück zum Zitat Li YD, Li YN, Su M, Li WB, Li YF, Li HZ, Qian X, Zhang XY, Li FY, Song YL (2017) Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv Electron Mater 3:1700253 Li YD, Li YN, Su M, Li WB, Li YF, Li HZ, Qian X, Zhang XY, Li FY, Song YL (2017) Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv Electron Mater 3:1700253
39.
Zurück zum Zitat Ren JS, Wang CX, Zhang X, Carey T, Chen KL, Yin YJ, Torrisi F (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630 Ren JS, Wang CX, Zhang X, Carey T, Chen KL, Yin YJ, Torrisi F (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630
40.
Zurück zum Zitat Robert C, Feller JF, Castro M (2012) Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Appl Mater Interfaces 4:3508–3516 Robert C, Feller JF, Castro M (2012) Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Appl Mater Interfaces 4:3508–3516
41.
Zurück zum Zitat Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163 Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163
42.
Zurück zum Zitat Yang Z, Wang DY, Pang Y, Li YX, Wang Q, Zhang TY, Wang JB, Liu X, Yang YY, Jian JM, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 10:3948–3954 Yang Z, Wang DY, Pang Y, Li YX, Wang Q, Zhang TY, Wang JB, Liu X, Yang YY, Jian JM, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 10:3948–3954
43.
Zurück zum Zitat Zhang MC, Wang CY, Wang Q, Jian MQ, Zhang YY (2016) Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces 8:20894–20899 Zhang MC, Wang CY, Wang Q, Jian MQ, Zhang YY (2016) Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces 8:20894–20899
44.
Zurück zum Zitat Cataldi P, Ceseracciu L, Athanassiou A, Bayer IS (2017) Healable cotton–graphene nanocomposite conductor for wearable electronics. ACS Appl Mater Interfaces 9:13825–13830 Cataldi P, Ceseracciu L, Athanassiou A, Bayer IS (2017) Healable cotton–graphene nanocomposite conductor for wearable electronics. ACS Appl Mater Interfaces 9:13825–13830
45.
Zurück zum Zitat Huang GW, Xiao HM, Fu SY (2015) Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci Rep 5:13971 Huang GW, Xiao HM, Fu SY (2015) Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci Rep 5:13971
46.
Zurück zum Zitat Cao YQ, Cao ZY, Li X, Wu D, Li AD (2014) A facile way to deposit conformal Al2O3 thin film on pristine graphene by atomic layer deposition. Appl Surf Sci 291:78–82 Cao YQ, Cao ZY, Li X, Wu D, Li AD (2014) A facile way to deposit conformal Al2O3 thin film on pristine graphene by atomic layer deposition. Appl Surf Sci 291:78–82
47.
Zurück zum Zitat Chen FX, Yang HY, Li K, Deng B, Li QS, Liu X, Dong BH, Xiao XF, Wang D, Qin Y, Wang SM, Zhang KQ, Xu WL (2017) Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano 11:10330–10336 Chen FX, Yang HY, Li K, Deng B, Li QS, Liu X, Dong BH, Xiao XF, Wang D, Qin Y, Wang SM, Zhang KQ, Xu WL (2017) Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano 11:10330–10336
48.
Zurück zum Zitat Detavernier C, Dendooven J, Sree SP, Ludwig KF, Martens JA (2011) Tailoring nanoporous materials by atomic layer deposition. Chem Soc Rev 40:5242–5253 Detavernier C, Dendooven J, Sree SP, Ludwig KF, Martens JA (2011) Tailoring nanoporous materials by atomic layer deposition. Chem Soc Rev 40:5242–5253
49.
Zurück zum Zitat George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131 George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131
50.
Zurück zum Zitat Chen XY, Zhu HL, Chen YC, Shang YY, Cao AY, Hu LB, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955 Chen XY, Zhu HL, Chen YC, Shang YY, Cao AY, Hu LB, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955
51.
Zurück zum Zitat Gui Z, Zhu HL, Gillette E, Han XG, Rubloff GW, Hu LB, Lee SB (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7:6037–6046 Gui Z, Zhu HL, Gillette E, Han XG, Rubloff GW, Hu LB, Lee SB (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7:6037–6046
52.
Zurück zum Zitat Jur JS, Spagnola JC, Lee K, Gong B, Peng Q, Parsons GN (2010) Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26:8239–8244 Jur JS, Spagnola JC, Lee K, Gong B, Peng Q, Parsons GN (2010) Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26:8239–8244
53.
Zurück zum Zitat Lee J, Yoon J, Kim HG, Kang S, Oh WS, Algadi H, Al-Sayari S, Shong B, Kim SH, Kim H, Lee T, Lee HBR (2016) Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Mater 8:e331 Lee J, Yoon J, Kim HG, Kang S, Oh WS, Algadi H, Al-Sayari S, Shong B, Kim SH, Kim H, Lee T, Lee HBR (2016) Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Mater 8:e331
54.
Zurück zum Zitat Vogel NA, Williams PS, Brozena AH, Sen D, Atanasov S, Parsons GN, Khan SA (2015) Delayed dissolution and small molecule release from atomic layer deposition coated electrospun nanofibers. Adv Mater Interfaces 2:1500229 Vogel NA, Williams PS, Brozena AH, Sen D, Atanasov S, Parsons GN, Khan SA (2015) Delayed dissolution and small molecule release from atomic layer deposition coated electrospun nanofibers. Adv Mater Interfaces 2:1500229
55.
Zurück zum Zitat Dasgupta NP, Neubert S, Lee W, Trejo O, Lee JR, Prinz FB (2010) Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem Mater 22:4769–4775 Dasgupta NP, Neubert S, Lee W, Trejo O, Lee JR, Prinz FB (2010) Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem Mater 22:4769–4775
56.
Zurück zum Zitat Kwon JH, Jeon Y, Choi KC (2018) Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl Mater Interfaces 10:32387–32396 Kwon JH, Jeon Y, Choi KC (2018) Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl Mater Interfaces 10:32387–32396
57.
Zurück zum Zitat Na JS, Peng Q, Scarel G, Parsons GN (2009) Role of gas doping sequence in surface reactions and dopant incorporation during atomic layer deposition of Al-doped ZnO. Chem Mater 21:5585–5593 Na JS, Peng Q, Scarel G, Parsons GN (2009) Role of gas doping sequence in surface reactions and dopant incorporation during atomic layer deposition of Al-doped ZnO. Chem Mater 21:5585–5593
58.
Zurück zum Zitat Zhai CH, Zhang RJ, Chen X, Zheng YX, Wang SY, Liu J, Dai N, Chen LY (2016) Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition. Nanoscale Res Lett 11:407 Zhai CH, Zhang RJ, Chen X, Zheng YX, Wang SY, Liu J, Dai N, Chen LY (2016) Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition. Nanoscale Res Lett 11:407
59.
Zurück zum Zitat Biccai S, Boland CS, O’Driscoll DP, Harvey A, Gabbett C, O’Suilleabhain DR, Griffin AJ, Li ZL, Young RJ, Coleman JN (2019) Negative gauge factor piezoresistive composites based on polymers filled with MoS2 nanosheets. ACS Nano 13:6845–6855 Biccai S, Boland CS, O’Driscoll DP, Harvey A, Gabbett C, O’Suilleabhain DR, Griffin AJ, Li ZL, Young RJ, Coleman JN (2019) Negative gauge factor piezoresistive composites based on polymers filled with MoS2 nanosheets. ACS Nano 13:6845–6855
60.
Zurück zum Zitat Zhang MC, Wang CY, Liang XP, Yin Z, Xia KL, Wang H, Jian MQ, Zhang YY (2017) Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater 3:1700193 Zhang MC, Wang CY, Liang XP, Yin Z, Xia KL, Wang H, Jian MQ, Zhang YY (2017) Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater 3:1700193
61.
Zurück zum Zitat Elliott SD, Dey G, Maimaiti Y, Ablat H, Filatova EA, Fomengia GN (2016) Modeling mechanism and growth reactions for new nanofabrication processes by atomic layer deposition. Adv Mater 28:5367–5380 Elliott SD, Dey G, Maimaiti Y, Ablat H, Filatova EA, Fomengia GN (2016) Modeling mechanism and growth reactions for new nanofabrication processes by atomic layer deposition. Adv Mater 28:5367–5380
62.
Zurück zum Zitat Niu W, Zhang L, Wang Y, Zhang S (2019) Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance. J Mater Chem C 7:3463–3470 Niu W, Zhang L, Wang Y, Zhang S (2019) Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance. J Mater Chem C 7:3463–3470
63.
Zurück zum Zitat Lee SM, Pippel E, Gosele U, Dresbach C, Qin Y, Chandran CV, Brauniger T, Hause G, Knez M (2009) Greatly increased toughness of infiltrated spider silk. Science 324:488–492 Lee SM, Pippel E, Gosele U, Dresbach C, Qin Y, Chandran CV, Brauniger T, Hause G, Knez M (2009) Greatly increased toughness of infiltrated spider silk. Science 324:488–492
64.
Zurück zum Zitat Vervuurt RHJ, Karasulu B, Verheijen MA, Kessels WMM, Bol AA (2017) Uniform atomic layer deposition of Al2O3 on graphene by reversible hydrogen plasma functionalization. Chem Mater 29:2090–2100 Vervuurt RHJ, Karasulu B, Verheijen MA, Kessels WMM, Bol AA (2017) Uniform atomic layer deposition of Al2O3 on graphene by reversible hydrogen plasma functionalization. Chem Mater 29:2090–2100
65.
Zurück zum Zitat Wen L, Sahu BB, Kim HR, Han JG (2019) Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature. Appl Surf Sci 473:649–656 Wen L, Sahu BB, Kim HR, Han JG (2019) Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature. Appl Surf Sci 473:649–656
66.
Zurück zum Zitat Hussain SQ, Le AHT, Mallem K, Park H, Ju M, Kim Y, Cho J, Park J, Kim Y, Yi J (2018) Using the light scattering properties of multi-textured AZO films on inverted hemisphere textured glass surface morphologies to improve the efficiency of silicon thin film solar cells. Appl Surf Sci 447:866–875 Hussain SQ, Le AHT, Mallem K, Park H, Ju M, Kim Y, Cho J, Park J, Kim Y, Yi J (2018) Using the light scattering properties of multi-textured AZO films on inverted hemisphere textured glass surface morphologies to improve the efficiency of silicon thin film solar cells. Appl Surf Sci 447:866–875
67.
Zurück zum Zitat Meng Y, Tang BT, Ju BZ, Wu SL, Zhang SF (2017) Multiple colors output on voile through 3D colloidal crystals with robust mechanical properties. ACS Appl Mater Interfaces 9:3024–3029 Meng Y, Tang BT, Ju BZ, Wu SL, Zhang SF (2017) Multiple colors output on voile through 3D colloidal crystals with robust mechanical properties. ACS Appl Mater Interfaces 9:3024–3029
Metadaten
Titel
Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics
verfasst von
Kai Zhao
Wenbin Niu
Shufen Zhang
Publikationsdatum
13.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04189-x

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Science 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.