Skip to main content
Erschienen in: Journal of Materials Science 6/2020

11.10.2019 | Energy materials

MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties

verfasst von: Xiaoli Zhao, Xiaoying Liu, Fei Li, Ming Huang

Erschienen in: Journal of Materials Science | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transitional metal oxides are demonstrated as promising candidates for pseudocapacitive electrode materials for use in high-performance supercapacitors. Here, we report a rational design of the MnO2@NiO nanosheets@nanowires hybrid structure. The as-prepared hierarchical structure shows highly uniformity and interconnection between ultrathin MnO2 nanosheets and NiO nanowires. The well-designed MnO2@NiO is directly used as binder-free electrode and exhibits a high specific capacitance (374.6 F g−1 at a current density of 0.25 A g−1; areal capacitance of 1.3 F cm−2), good rate capability, and excellent cycling stability (92.7% capacitance retention after 5000 charge/discharge cycles). An asymmetric supercapacitor (ASC) is assembled using the MnO2@NiO as the positive electrode and activated microwave exfoliated graphite oxide as the negative electrode. The assembled ASC shows excellent electrochemical performance with an energy density of 15.4 W kg−1 and a maximum power density of 9360 W kg−1. These analytical and experimental results clearly indicate the advantages of multicomponent hierarchical core–shell structure for engineering high-performance electrochemical capacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRef Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRef
2.
Zurück zum Zitat Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef
3.
Zurück zum Zitat Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRef Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRef
4.
Zurück zum Zitat Wang J, Li F, Zhu F, Schmidt OG (2018) Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3:1800367CrossRef Wang J, Li F, Zhu F, Schmidt OG (2018) Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3:1800367CrossRef
5.
Zurück zum Zitat Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci 8:702–730CrossRef Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci 8:702–730CrossRef
6.
Zurück zum Zitat Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRef Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRef
7.
Zurück zum Zitat Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
8.
Zurück zum Zitat Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992CrossRef Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992CrossRef
9.
Zurück zum Zitat Li H, Wu X, Zhou J, Liu Y, Huang M, Xing W, Yan Z, Zhuo S (2019) Enhanced supercapacitive performance of MnCO3@rGO in an electrolyte with KI as additive. ChemElectroChem 6:316–319CrossRef Li H, Wu X, Zhou J, Liu Y, Huang M, Xing W, Yan Z, Zhuo S (2019) Enhanced supercapacitive performance of MnCO3@rGO in an electrolyte with KI as additive. ChemElectroChem 6:316–319CrossRef
10.
Zurück zum Zitat Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef
11.
Zurück zum Zitat Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857CrossRef Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857CrossRef
12.
Zurück zum Zitat Huang M, Li F, Ji JY, Zhang YX, Zhao XL, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884CrossRef Huang M, Li F, Ji JY, Zhang YX, Zhao XL, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884CrossRef
13.
Zurück zum Zitat Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470CrossRef Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470CrossRef
14.
Zurück zum Zitat Xu W, Dai S, Liu G, Xi Y, Hu C, Wang X (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8CrossRef Xu W, Dai S, Liu G, Xi Y, Hu C, Wang X (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8CrossRef
15.
Zurück zum Zitat Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43CrossRef Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43CrossRef
16.
Zurück zum Zitat Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767CrossRef Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767CrossRef
17.
Zurück zum Zitat Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRef Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRef
18.
Zurück zum Zitat Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567CrossRef Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567CrossRef
19.
Zurück zum Zitat Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807CrossRef Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807CrossRef
20.
Zurück zum Zitat Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRef Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRef
21.
Zurück zum Zitat Li F, Xing Y, Huang M, Li KL, Yu TT, Zhang YX, Losic D (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3:7855–7861CrossRef Li F, Xing Y, Huang M, Li KL, Yu TT, Zhang YX, Losic D (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3:7855–7861CrossRef
22.
Zurück zum Zitat Le QJ, Huang M, Wang T, Liu XY, Sun L, Guo XL, Jiang DB, Wang J, Dong F, Zhang YX (2019) Biotemplate derived three dimensional nitrogen doped graphene@ MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J Colloid Interface Sci 544:155–163CrossRef Le QJ, Huang M, Wang T, Liu XY, Sun L, Guo XL, Jiang DB, Wang J, Dong F, Zhang YX (2019) Biotemplate derived three dimensional nitrogen doped graphene@ MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J Colloid Interface Sci 544:155–163CrossRef
23.
Zurück zum Zitat Qi H, Bo Z, Yang S, Duan L, Yang H, Yan J, Cen K, Ostrikov KK (2019) Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater 16:607–618CrossRef Qi H, Bo Z, Yang S, Duan L, Yang H, Yan J, Cen K, Ostrikov KK (2019) Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater 16:607–618CrossRef
24.
Zurück zum Zitat Lv X, Zhang H, Wang F, Hu Z, Zhang Y, Zhang L, Xie R, Ji J (2018) Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm 20:1690–1697CrossRef Lv X, Zhang H, Wang F, Hu Z, Zhang Y, Zhang L, Xie R, Ji J (2018) Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm 20:1690–1697CrossRef
25.
Zurück zum Zitat Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426CrossRef Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426CrossRef
26.
Zurück zum Zitat Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529CrossRef Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529CrossRef
27.
Zurück zum Zitat Soriano L, Preda I, Gutiérrez A, Palacín S, Abbate M, Vollmer A (2007) Surface effects in the Ni2p x-ray photoemission spectra of NiO. Phys Rev B 75:233417CrossRef Soriano L, Preda I, Gutiérrez A, Palacín S, Abbate M, Vollmer A (2007) Surface effects in the Ni2p x-ray photoemission spectra of NiO. Phys Rev B 75:233417CrossRef
28.
Zurück zum Zitat Preda I, Gutiérrez A, Abbate M, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Interface effects in the Ni2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys Rev B 77:075411CrossRef Preda I, Gutiérrez A, Abbate M, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Interface effects in the Ni2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys Rev B 77:075411CrossRef
29.
Zurück zum Zitat Chen J, Huang Y, Li C, Chen X, Zhang X (2016) Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application. Appl Surf Sci 360:534–539CrossRef Chen J, Huang Y, Li C, Chen X, Zhang X (2016) Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application. Appl Surf Sci 360:534–539CrossRef
30.
Zurück zum Zitat Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58:7823–7828CrossRef Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58:7823–7828CrossRef
31.
Zurück zum Zitat Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef
32.
Zurück zum Zitat Deng L, Zhu G, Wang J, Kang L, Liu Z-H, Yang Z, Wang Z (2011) Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. J Power Sources 196:10782–10787CrossRef Deng L, Zhu G, Wang J, Kang L, Liu Z-H, Yang Z, Wang Z (2011) Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. J Power Sources 196:10782–10787CrossRef
33.
Zurück zum Zitat Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203CrossRef Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203CrossRef
34.
Zurück zum Zitat Xu W, Mu B, Wang A (2016) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94CrossRef Xu W, Mu B, Wang A (2016) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94CrossRef
Metadaten
Titel
MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties
verfasst von
Xiaoli Zhao
Xiaoying Liu
Fei Li
Ming Huang
Publikationsdatum
11.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04112-4

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Science 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.