Skip to main content
Erschienen in: Journal of Materials Science 6/2020

21.10.2019 | Chemical routes to materials

Electrowetting behaviour of thermostable liquid over wide temperature range

verfasst von: Sandip M. Wadhai, Yogesh B. Sawane, Arun G. Banpurkar

Erschienen in: Journal of Materials Science | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Outdoor electrowetting (EW)-based applications need consistent wetting response in the temperatures ranging from − 40 to 70 °C. Aqueous ethylene glycol is commonly used as thermostable liquid; nevertheless, its EW behaviour over a wide range of temperature is less known. We examine this behaviour for both ac and dc voltages over the temperature range from − 25 to 65 °C. The self-consistent EW responses, i.e. cosine of contact angle versus voltage square, are analysed to illustrate the EW behaviour. There is a systematic increase in EW response with temperature confirmed from the linear dependence of interfacial tension on temperature. Our result corroborates Eötvös phenomenological relation. We suggest the need of correction voltage with changing temperature to maintain uniform EW response over this temperature range. Further with decreasing temperature, the solution viscosity increases more rapidly than the increase in interfacial tension value, and thus the capillary number \( (Ca = \mu v/\gamma ) \) gets partially regulated. This is seen as a marginal variation in the switching time of the EW contact angle during the OFF voltage state to ON state and vice versa. Finally, the working of a prototype liquid lens at − 25 °C, the lowest operating temperature, is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys-Condens Matter 17:R705–R774CrossRef Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys-Condens Matter 17:R705–R774CrossRef
2.
Zurück zum Zitat Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187CrossRef Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187CrossRef
3.
Zurück zum Zitat Haller B, Gopfrich K, Schroter M, Janiesch JW, Platzman I, Spatz JP (2018) Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18:2665–2674CrossRef Haller B, Gopfrich K, Schroter M, Janiesch JW, Platzman I, Spatz JP (2018) Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18:2665–2674CrossRef
4.
Zurück zum Zitat de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F (2014) Electrostatic potential wells for on-demand drop manipulation in microchannels. Lab Chip 14:883–891CrossRef de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F (2014) Electrostatic potential wells for on-demand drop manipulation in microchannels. Lab Chip 14:883–891CrossRef
5.
Zurück zum Zitat Guan Y, Li BY, Zhu MN, Cheng SJ, Tu JY (2019) Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Phys Fluids 31:062002CrossRef Guan Y, Li BY, Zhu MN, Cheng SJ, Tu JY (2019) Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Phys Fluids 31:062002CrossRef
6.
Zurück zum Zitat Pit AM, Duits MHG, Mugele F (2015) Droplet manipulations in two phase flow microfluidics. Micromach Basel 6:1768–1793CrossRef Pit AM, Duits MHG, Mugele F (2015) Droplet manipulations in two phase flow microfluidics. Micromach Basel 6:1768–1793CrossRef
7.
Zurück zum Zitat Kim DY, Steckl AJ (2007) Liquid-state field-effect transistors using electrowetting. Appl Phys Lett 90:043507CrossRef Kim DY, Steckl AJ (2007) Liquid-state field-effect transistors using electrowetting. Appl Phys Lett 90:043507CrossRef
8.
Zurück zum Zitat Latip ENA, Coudron L, McDonnell MB, Johnston ID, McCluskey DK, Day R, Tracey MC (2017) Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Adv 7:49633–49648CrossRef Latip ENA, Coudron L, McDonnell MB, Johnston ID, McCluskey DK, Day R, Tracey MC (2017) Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Adv 7:49633–49648CrossRef
9.
Zurück zum Zitat Banpurkar AG, Nichols KP, Mugele F (2008) Electrowetting-based microdrop tensiometer. Langmuir 24:10549–10551CrossRef Banpurkar AG, Nichols KP, Mugele F (2008) Electrowetting-based microdrop tensiometer. Langmuir 24:10549–10551CrossRef
10.
Zurück zum Zitat Hsu TH, Taylor JA, Krupenkin TN (2017) Energy harvesting from aperiodic low-frequency motion using reverse electrowetting. Faraday Discuss 199:377–392CrossRef Hsu TH, Taylor JA, Krupenkin TN (2017) Energy harvesting from aperiodic low-frequency motion using reverse electrowetting. Faraday Discuss 199:377–392CrossRef
11.
Zurück zum Zitat Dey R, Gilbers J, Baratian D, Hoek H, van den Ende D, Mugele F (2018) Controlling shedding characteristics of condensate drops using electrowetting. Appl Phys Lett 113:243703CrossRef Dey R, Gilbers J, Baratian D, Hoek H, van den Ende D, Mugele F (2018) Controlling shedding characteristics of condensate drops using electrowetting. Appl Phys Lett 113:243703CrossRef
12.
Zurück zum Zitat Mishra K, Murade C, Carreel B, Roghair I, Oh JM, Manukyan G, van den Ende D, Mugele F (2014) Optofluidic lens with tunable focal length and asphericity. Sci Rep UK 4:6378CrossRef Mishra K, Murade C, Carreel B, Roghair I, Oh JM, Manukyan G, van den Ende D, Mugele F (2014) Optofluidic lens with tunable focal length and asphericity. Sci Rep UK 4:6378CrossRef
13.
Zurück zum Zitat Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163CrossRef Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163CrossRef
14.
Zurück zum Zitat Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12:255–259CrossRef Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12:255–259CrossRef
15.
Zurück zum Zitat Murade CU, van der Ende D, Mugele F (2012) High speed adaptive liquid microlens array. Opt Express 20:18180–18187CrossRef Murade CU, van der Ende D, Mugele F (2012) High speed adaptive liquid microlens array. Opt Express 20:18180–18187CrossRef
16.
Zurück zum Zitat Zohrabi M, Lim WY, Cormack RH, Supekar OD, Bright VM, Gopinath JT (2019) Lidar system with nonmechanical electrowetting-based wide-angle beam steering. Opt Express 27:4404–4415CrossRef Zohrabi M, Lim WY, Cormack RH, Supekar OD, Bright VM, Gopinath JT (2019) Lidar system with nonmechanical electrowetting-based wide-angle beam steering. Opt Express 27:4404–4415CrossRef
17.
Zurück zum Zitat Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Clapp L, Schwartz R (2009) Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat Photonics 3:292–296CrossRef Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Clapp L, Schwartz R (2009) Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat Photonics 3:292–296CrossRef
18.
Zurück zum Zitat Luo ZJ, Luo JK, Zhao WW, Cao Y, Lin WJ, Zhou GF (2018) A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. Opt Rev 25:18–26CrossRef Luo ZJ, Luo JK, Zhao WW, Cao Y, Lin WJ, Zhou GF (2018) A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. Opt Rev 25:18–26CrossRef
19.
Zurück zum Zitat Roques-Carmes T, Hayes RA, Feenstra BJ, Schlangen LJM (2004) Liquid behavior inside a reflective display pixel based on electrowetting. J Appl Phys 95:4389–4396CrossRef Roques-Carmes T, Hayes RA, Feenstra BJ, Schlangen LJM (2004) Liquid behavior inside a reflective display pixel based on electrowetting. J Appl Phys 95:4389–4396CrossRef
20.
Zurück zum Zitat Wu H, Haye RA, Li FH, Henzen A, Shui LL, Zhou GF (2018) Influence of fluoropolymer surface wettability on electrowetting display performance. Displays 53:47–53CrossRef Wu H, Haye RA, Li FH, Henzen A, Shui LL, Zhou GF (2018) Influence of fluoropolymer surface wettability on electrowetting display performance. Displays 53:47–53CrossRef
21.
Zurück zum Zitat Zhou R, Ye QL, Li H, Jiang HW, Tang B, Zhou GF (2019) Experimental study on the reliability of water/fluoropolymer/ITO contact in electrowetting displays. Results Phys 12:1991–1998CrossRef Zhou R, Ye QL, Li H, Jiang HW, Tang B, Zhou GF (2019) Experimental study on the reliability of water/fluoropolymer/ITO contact in electrowetting displays. Results Phys 12:1991–1998CrossRef
22.
Zurück zum Zitat Li L, Wang D, Liu C, Wang QH (2016) Zoom microscope objective using electrowetting lenses. Opt Express 24:2931–2940CrossRef Li L, Wang D, Liu C, Wang QH (2016) Zoom microscope objective using electrowetting lenses. Opt Express 24:2931–2940CrossRef
23.
Zurück zum Zitat Hu XD, Zhang SG, Lu XJ, Qu C, Lu LJ, MaXY Zhang XP, Deng YQ (2012) On the performance of thermostable electrowetting agents. Surf Interface Anal 44:478–483CrossRef Hu XD, Zhang SG, Lu XJ, Qu C, Lu LJ, MaXY Zhang XP, Deng YQ (2012) On the performance of thermostable electrowetting agents. Surf Interface Anal 44:478–483CrossRef
24.
Zurück zum Zitat Ober MS, Dermody D, Maillard M, Amiot F, Malet G, Burger B, Woelfle-Gupta C, Berge B (2018) Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference. Acs Comb Sci 20:554–566CrossRef Ober MS, Dermody D, Maillard M, Amiot F, Malet G, Burger B, Woelfle-Gupta C, Berge B (2018) Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference. Acs Comb Sci 20:554–566CrossRef
25.
Zurück zum Zitat Eötvös L (1886) Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Ann Phys 263:448–459CrossRef Eötvös L (1886) Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Ann Phys 263:448–459CrossRef
26.
Zurück zum Zitat Liu CX, Park J, Choi JW (2018) A planar lens based on the electrowetting of two immiscible liquids. J Micromech Microeng 18:035023CrossRef Liu CX, Park J, Choi JW (2018) A planar lens based on the electrowetting of two immiscible liquids. J Micromech Microeng 18:035023CrossRef
27.
Zurück zum Zitat Banpurkar AG, Sawane Y, Wadhai SM, Murade CU, Siretanu I, van den Ende D, Mugele F (2017) Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss 199:29–47CrossRef Banpurkar AG, Sawane Y, Wadhai SM, Murade CU, Siretanu I, van den Ende D, Mugele F (2017) Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss 199:29–47CrossRef
Metadaten
Titel
Electrowetting behaviour of thermostable liquid over wide temperature range
verfasst von
Sandip M. Wadhai
Yogesh B. Sawane
Arun G. Banpurkar
Publikationsdatum
21.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04120-4

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Science 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.