Skip to main content
Erschienen in: Journal of Materials Science 6/2020

15.11.2019 | Composites & nanocomposites

Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort

verfasst von: M. A. Rahman Bhuiyan, Lijing Wang, Abu Shaid, Israt Jahan, Robert A. Shanks

Erschienen in: Journal of Materials Science | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research has designed and prepared a protective clothing layer by integrating porous silica aerogel with nonwoven fabrics for simultaneous chemical and thermal protection. Protective interlining having resistance to heat and liquid chemical penetration was developed by sandwiching randomly distributed aerogel particles between viscose nonwoven fabric layers. The nonwoven layer and aerogel particle layer were explored by analysing fabric surface morphology. Physical characterization of the test specimens revealed that the weight and thickness of fabric increased after the integration of aerogel particles. Consequently, improved chemical resistance and thermal resistance were observed in the aerogel–nonwoven fabrics with higher aerogel concentration. For clothing comfort, the high air permeability indicated sufficient breathability by transferring air and water vapour from the body to the atmosphere and vice versa through apparel. Improved evaporative transmittance and cooling index of aerogel–fabrics suggested that the fabric will create a favourable thermal comfort microenvironment between the skin and apparel. For wear comfort regarding wet clinginess, the high water uptake and evaporation rate of the fabric specimens indicated their ability to retain and evaporate large amounts of perspiration vapour in a hot and humid atmosphere. The overall performance of the aerogel–nonwoven fabrics suggested that the integration of silica aerogel with viscose nonwoven fabric is a prospective approach for developing protective interlining that will provide reliable chemical and thermal protection as well as adequate clothing comfort to the wearer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Shaid A (2018) Incorporation of aerogel and phase change material in textiles for thermal protection. RMIT University, Melbourne, p 204 Shaid A (2018) Incorporation of aerogel and phase change material in textiles for thermal protection. RMIT University, Melbourne, p 204
3.
Zurück zum Zitat Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26CrossRef Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26CrossRef
4.
Zurück zum Zitat Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater 250:100–119CrossRef Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater 250:100–119CrossRef
5.
Zurück zum Zitat Venkataraman M et al (2018) Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym Adv Technol 29(10):2583–2592CrossRef Venkataraman M et al (2018) Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym Adv Technol 29(10):2583–2592CrossRef
6.
Zurück zum Zitat Feng J et al (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf A 506:298–305CrossRef Feng J et al (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf A 506:298–305CrossRef
7.
Zurück zum Zitat Hrubesh L, Keene L, Latorre V (1993) Dielectric properties of aerogels. J Mater Res 8(7):1736–1741CrossRef Hrubesh L, Keene L, Latorre V (1993) Dielectric properties of aerogels. J Mater Res 8(7):1736–1741CrossRef
8.
Zurück zum Zitat Chen-Yang Y et al (2008) Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. J Power Sour 182(1):340–348CrossRef Chen-Yang Y et al (2008) Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. J Power Sour 182(1):340–348CrossRef
9.
Zurück zum Zitat Štandeker S, Novak Z, Knez Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310(2):362–368CrossRef Štandeker S, Novak Z, Knez Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310(2):362–368CrossRef
10.
Zurück zum Zitat Xiong X et al (2018) Thermal and compression characteristics of aerogel-encapsulated textiles. J Ind Text 47(8):1998–2013CrossRef Xiong X et al (2018) Thermal and compression characteristics of aerogel-encapsulated textiles. J Ind Text 47(8):1998–2013CrossRef
11.
Zurück zum Zitat Höffele S, Russell SJ, Brook DB (2005) Light-weight nonwoven thermal protection fabrics containing nanostructured materials. Int Nonwovens J 14(4):10–16 Höffele S, Russell SJ, Brook DB (2005) Light-weight nonwoven thermal protection fabrics containing nanostructured materials. Int Nonwovens J 14(4):10–16
12.
Zurück zum Zitat Shaid A, Fergusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43 Shaid A, Fergusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43
13.
Zurück zum Zitat Venkataraman M et al (2015) Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. J Text Inst 106(7):736–747CrossRef Venkataraman M et al (2015) Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. J Text Inst 106(7):736–747CrossRef
14.
Zurück zum Zitat Jin L, Hong K, Yoon K (2013) Effect of aerogel on thermal protective performance of firefighter clothing. J Fiber Bioeng Inf 6(3):315–324CrossRef Jin L, Hong K, Yoon K (2013) Effect of aerogel on thermal protective performance of firefighter clothing. J Fiber Bioeng Inf 6(3):315–324CrossRef
15.
Zurück zum Zitat Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45(4):611–625CrossRef Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45(4):611–625CrossRef
16.
Zurück zum Zitat Bhuiyan MR et al (2019) Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog Org Coat 131:100–110CrossRef Bhuiyan MR et al (2019) Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog Org Coat 131:100–110CrossRef
17.
Zurück zum Zitat Wilson A (2007) Development of the nonwovens industry. In: Russell SJ (ed) Handbook of nonwovens. Woodhead, Cambridge, pp 1–15 Wilson A (2007) Development of the nonwovens industry. In: Russell SJ (ed) Handbook of nonwovens. Woodhead, Cambridge, pp 1–15
18.
Zurück zum Zitat Mao N, Russell S, Pourdeyhimi B (2007) Characterisation, testing and modelling of nonwoven fabrics. In: Russell S (ed) Handbook of nonwovens. Woodhead, Cambridge, pp 401–514CrossRef Mao N, Russell S, Pourdeyhimi B (2007) Characterisation, testing and modelling of nonwoven fabrics. In: Russell S (ed) Handbook of nonwovens. Woodhead, Cambridge, pp 401–514CrossRef
19.
Zurück zum Zitat Xiong X et al (2016) Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym 17(10):1709–1714CrossRef Xiong X et al (2016) Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym 17(10):1709–1714CrossRef
20.
Zurück zum Zitat Bhuiyan MAR et al (2019) Advances and applications of chemical protective clothing system. J Ind Text 49(1):97–138CrossRef Bhuiyan MAR et al (2019) Advances and applications of chemical protective clothing system. J Ind Text 49(1):97–138CrossRef
22.
Zurück zum Zitat Mortan W, Hearle L (2008) Physical properties of textile fibers, 4th edn. Woodhead, CambridgeCrossRef Mortan W, Hearle L (2008) Physical properties of textile fibers, 4th edn. Woodhead, CambridgeCrossRef
23.
Zurück zum Zitat Shaid A et al (2018) Aerogel nonwoven as reinforcement and batting material for firefighter’s protective clothing: a comparative study. J Sol-Gel Sci Technol 87(1):95–104CrossRef Shaid A et al (2018) Aerogel nonwoven as reinforcement and batting material for firefighter’s protective clothing: a comparative study. J Sol-Gel Sci Technol 87(1):95–104CrossRef
24.
Zurück zum Zitat Shaid A et al (2018) Effect of aerogel incorporation in PCM-containing thermal liner of firefighting garment. Cloth Text Res J 1–14 Shaid A et al (2018) Effect of aerogel incorporation in PCM-containing thermal liner of firefighting garment. Cloth Text Res J 1–14
25.
Zurück zum Zitat Shaid A et al (2019) Low cost bench scale apparatus for measuring the thermal resistance of multilayered textile fabric against radiative and contact heat transfer. HardwareX 5 Shaid A et al (2019) Low cost bench scale apparatus for measuring the thermal resistance of multilayered textile fabric against radiative and contact heat transfer. HardwareX 5
26.
Zurück zum Zitat Houshyar S et al (2015) Evaluation and improvement of thermo-physiological comfort properties of firefighters’ protective clothing containing super absorbent materials. J Text Inst 106(12):1394–1402CrossRef Houshyar S et al (2015) Evaluation and improvement of thermo-physiological comfort properties of firefighters’ protective clothing containing super absorbent materials. J Text Inst 106(12):1394–1402CrossRef
27.
Zurück zum Zitat Nayak R et al (2018) Evaluation of thermal, moisture management and sensorial comfort properties of superabsorbent polyacrylate fabrics for the next-to-skin layer in firefighters’ protective clothing. Text Res J 88(9):1077–1088CrossRef Nayak R et al (2018) Evaluation of thermal, moisture management and sensorial comfort properties of superabsorbent polyacrylate fabrics for the next-to-skin layer in firefighters’ protective clothing. Text Res J 88(9):1077–1088CrossRef
28.
Zurück zum Zitat Zupin Ž, Hladnik A, Dimitrovski K (2012) Prediction of one-layer woven fabrics air permeability using porosity parameters. Text Res J 82(2):117–128CrossRef Zupin Ž, Hladnik A, Dimitrovski K (2012) Prediction of one-layer woven fabrics air permeability using porosity parameters. Text Res J 82(2):117–128CrossRef
29.
Zurück zum Zitat Saville B (1999) Physical testing of textiles, 1st edn. Woodhead, CambridgeCrossRef Saville B (1999) Physical testing of textiles, 1st edn. Woodhead, CambridgeCrossRef
30.
Zurück zum Zitat Kothari VK, Newton A (1974) The air-permeability of non-woven fabrics. J Text Inst 65(10):525–531CrossRef Kothari VK, Newton A (1974) The air-permeability of non-woven fabrics. J Text Inst 65(10):525–531CrossRef
31.
Zurück zum Zitat Moiz A et al (2016) Chemical and water protective surface on cotton fabric by pad-knife-pad coating of WPU-PDMS-TMS. Cellulose 23(5):3377–3388CrossRef Moiz A et al (2016) Chemical and water protective surface on cotton fabric by pad-knife-pad coating of WPU-PDMS-TMS. Cellulose 23(5):3377–3388CrossRef
32.
Zurück zum Zitat Moiz A, Padhye R, Wang X (2017) Coating of TPU-PDMS-TMS on polycotton fabrics for versatile protection. Polymers 9(12):1–17CrossRef Moiz A, Padhye R, Wang X (2017) Coating of TPU-PDMS-TMS on polycotton fabrics for versatile protection. Polymers 9(12):1–17CrossRef
Metadaten
Titel
Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort
verfasst von
M. A. Rahman Bhuiyan
Lijing Wang
Abu Shaid
Israt Jahan
Robert A. Shanks
Publikationsdatum
15.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04203-2

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Science 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.