Skip to main content
Erschienen in: Environmental Earth Sciences 19/2020

01.10.2020 | Original Article

Hybrid modelling approach for water body change detection at Chalan Beel area in northern Bangladesh

verfasst von: Riad Arefin, Sarita Gajbhiye Meshram, Celso Augusto Guimarães Santos, Richarde Marques da Silva, Jagalingam Pushparaj

Erschienen in: Environmental Earth Sciences | Ausgabe 19/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water is a strategic resource for both socio-economic development and human life. The current study has been carried out for spatio-temporal change detection of surface water bodies during winter period using hybrid modelling approach. The study area has fallen in the northern part of Bangladesh and is locally called Chalan Beel with 5 million of in habitants, a prominent intensive crop production, surface and groundwater irrigation, high evapotranspiration, and water scarcity. For the detection of water body changes, satellite images of 1999 and 2011 were used, and the following image fusion techniques were applied: (a) Gram-Schmidt (GS), (b) modified intensity hue saturation (IHS), (c) high-pass filter (HPF), and (d) wavelet. Landsat 7/ETM + panchromatic (PAN) band of 15 m × 15 m resolution in 1999 and Landsat 5/TM multispectral (MS) bands of 30 m × 30 m resolution in 2011 were allied each other to generate high-resolution image that contains information of two different years. The fused images were classified to extract the water bodies using four classification methods: (a) artificial neural network (ANN), (b) support vector machine (SVM) and (c) maximum likelihood (ML). To analyze the quality of the fused images, statistical calculation (quantitatively) and Laplacian edge detection (qualitatively) were used. To validate the fused image classification results, the multispectral images from 1999 and 2011 were again individually classified using principal component analysis (PCA), normalized difference water index (NDWI), and image differencing (ID) processes and compared with the previous classification. Surprisingly, the results showed that two-third of the areas dried up in 10 years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aiazzi B, Alparone L, Baronti S, Garzelli A (2002) Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans Geosci Remote Sens 40:2300–2312 Aiazzi B, Alparone L, Baronti S, Garzelli A (2002) Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans Geosci Remote Sens 40:2300–2312
Zurück zum Zitat Alparone L, Baronti S, Garzelli A, Nencini F (2004) A global qualitymeasurement of pan-sharpened multispectral imagery. IEEE Geosci Remote Sens 1:313–317 Alparone L, Baronti S, Garzelli A, Nencini F (2004) A global qualitymeasurement of pan-sharpened multispectral imagery. IEEE Geosci Remote Sens 1:313–317
Zurück zum Zitat Anjali M, Bhirud SG (2009) Image fusion of digital images. Int J Recent Trends Eng 2:146–148 Anjali M, Bhirud SG (2009) Image fusion of digital images. Int J Recent Trends Eng 2:146–148
Zurück zum Zitat Anjali A, Pure NG, Meha S (2013) An overview of different image fusion methods for medical applications. Int J Sci Eng Res 4:2229–5518 Anjali A, Pure NG, Meha S (2013) An overview of different image fusion methods for medical applications. Int J Sci Eng Res 4:2229–5518
Zurück zum Zitat Apurva S, Anil S (2013) A brief review of different image fusion algorithm. Int J Sci Res 4:2650 Apurva S, Anil S (2013) A brief review of different image fusion algorithm. Int J Sci Res 4:2650
Zurück zum Zitat Chen S, Wen Z, Jiang H, Zhao Q, Zhang X, Chen Y (2015) Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability 7:11401–11417 Chen S, Wen Z, Jiang H, Zhao Q, Zhang X, Chen Y (2015) Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability 7:11401–11417
Zurück zum Zitat Clayton DG (1971) In applied statistics, vol 20. Prentice Hall, Englewood Cliffs, pp 335–338 Clayton DG (1971) In applied statistics, vol 20. Prentice Hall, Englewood Cliffs, pp 335–338
Zurück zum Zitat Clayton DG (1974) The Gram-Schmidt regression”, farebrother. Appl Stat 23:470–476 Clayton DG (1974) The Gram-Schmidt regression”, farebrother. Appl Stat 23:470–476
Zurück zum Zitat Deepak KS, Parsai MP (2012) Different image fusion techniques—a critical review. Int J Modern Eng Res (IJMER) 2:4298–4301 Deepak KS, Parsai MP (2012) Different image fusion techniques—a critical review. Int J Modern Eng Res (IJMER) 2:4298–4301
Zurück zum Zitat Devyani M, Deshmukh P, Malviya PAV (2015) Image fusion an application of digital image processing using wavelet transform. Int J Sci Eng Res 6:1247–1255 Devyani M, Deshmukh P, Malviya PAV (2015) Image fusion an application of digital image processing using wavelet transform. Int J Sci Eng Res 6:1247–1255
Zurück zum Zitat ENVI (2004) ENVI Users Guide, Version 4.1, Research Systems, Inc., pp 1150 ENVI (2004) ENVI Users Guide, Version 4.1, Research Systems, Inc., pp 1150
Zurück zum Zitat Frazier PS, Page KJ (2000) Water body detection and delineation with landsat TM data. Photogramm Eng Remote Sens 66(12):1461–1468 Frazier PS, Page KJ (2000) Water body detection and delineation with landsat TM data. Photogramm Eng Remote Sens 66(12):1461–1468
Zurück zum Zitat Frederick P, Alfred H, Hahn CJ, Ben Z, Charles I (2018) Lake Chad total surface water area as derived from land surface temperature and radar remote sensing data. Remote Sens 10:252 Frederick P, Alfred H, Hahn CJ, Ben Z, Charles I (2018) Lake Chad total surface water area as derived from land surface temperature and radar remote sensing data. Remote Sens 10:252
Zurück zum Zitat Gallant AL (2015) The challenges of remote monitoring of wetlands. Remote Sens 7:10938–10950 Gallant AL (2015) The challenges of remote monitoring of wetlands. Remote Sens 7:10938–10950
Zurück zum Zitat Gangkofner UG, Pradhan PS, Holcomb DW (2008) Optimizing the highpass filter addition technique for image fusion. Photogramm Eng Remote Sens 74:1107–1118 Gangkofner UG, Pradhan PS, Holcomb DW (2008) Optimizing the highpass filter addition technique for image fusion. Photogramm Eng Remote Sens 74:1107–1118
Zurück zum Zitat Guy JPS (2015) Preface: remote sensing in flood monitoring and management. Remote Sens 7:17013–17015 Guy JPS (2015) Preface: remote sensing in flood monitoring and management. Remote Sens 7:17013–17015
Zurück zum Zitat Jagalingam P, Arkal VH (2017) Comparison of various pan-sharpening methods using Quickbird-2 and Landsat-8 imagery. Arab J Geosci 10:119 Jagalingam P, Arkal VH (2017) Comparison of various pan-sharpening methods using Quickbird-2 and Landsat-8 imagery. Arab J Geosci 10:119
Zurück zum Zitat Jensen JR (2004) Introductory digital image processing: a remote sensing perspective. Pearson Prentice Hall, Upper Saddle River Jensen JR (2004) Introductory digital image processing: a remote sensing perspective. Pearson Prentice Hall, Upper Saddle River
Zurück zum Zitat Kaplan NH (2018) Weighted intensity hue saturation transform for image enhancement and pansharpening. Turk J Electric Eng Comput Sci 26:204–219 Kaplan NH (2018) Weighted intensity hue saturation transform for image enhancement and pansharpening. Turk J Electric Eng Comput Sci 26:204–219
Zurück zum Zitat Klonus S, Ehlers M (2007) Image fusion using the Ehlers spectral characteristics preservation algorithm. GI Sci Remote Sens 44:93–116 Klonus S, Ehlers M (2007) Image fusion using the Ehlers spectral characteristics preservation algorithm. GI Sci Remote Sens 44:93–116
Zurück zum Zitat Klonus S, Ehlers M (2009) Performance of evaluation methods in image fusion. In: 12th international conference on information fusion Seattle, WA, USA, pp 1409–1416 Klonus S, Ehlers M (2009) Performance of evaluation methods in image fusion. In: 12th international conference on information fusion Seattle, WA, USA, pp 1409–1416
Zurück zum Zitat Laben CA, Brower BV (2000) Webster, both of N.Y. process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Eastman Kodak Company, Rochester, NY 1998. Laben CA, Brower BV (2000) Webster, both of N.Y. process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Eastman Kodak Company, Rochester, NY 1998.
Zurück zum Zitat Li G, Lu D, Moran E, Hetrick S (2011) Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery. Int J Remote Sens 32:8207–8230 Li G, Lu D, Moran E, Hetrick S (2011) Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery. Int J Remote Sens 32:8207–8230
Zurück zum Zitat Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. An introductory text book on remote sensing. Wiley, New York Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. An introductory text book on remote sensing. Wiley, New York
Zurück zum Zitat Mamta S (2016) A review: image fusion techniques and applications. Int J Comput Sci Inf Technol (IJCSIT) 7:1082–1085 Mamta S (2016) A review: image fusion techniques and applications. Int J Comput Sci Inf Technol (IJCSIT) 7:1082–1085
Zurück zum Zitat Maurer T (2013) How to pan-sharpen images using the Gram-Schmidt Pan-Sharpen method—a recipe. international archives of the photogrammetry. Remote Sens Spatial Inf Sci XL-1/W1:239–244 Maurer T (2013) How to pan-sharpen images using the Gram-Schmidt Pan-Sharpen method—a recipe. international archives of the photogrammetry. Remote Sens Spatial Inf Sci XL-1/W1:239–244
Zurück zum Zitat McFeeters SK (1996) The use of normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432 McFeeters SK (1996) The use of normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432
Zurück zum Zitat Nirmala P, Kishore R (2018) Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm. Multimed Tools Appl 77:12405–12436 Nirmala P, Kishore R (2018) Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm. Multimed Tools Appl 77:12405–12436
Zurück zum Zitat Owojori A, Xie H (2005) Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In: Paper presented at the 5th international symposium on remote sensing of urban areas, Tempe, AZ Owojori A, Xie H (2005) Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In: Paper presented at the 5th international symposium on remote sensing of urban areas, Tempe, AZ
Zurück zum Zitat Pal M, Foody GM (2012) Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J Sel Top Appl Earth Obs Remote Sens 5:1344–1355 Pal M, Foody GM (2012) Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J Sel Top Appl Earth Obs Remote Sens 5:1344–1355
Zurück zum Zitat Ragvendra BR, Ramasri DT (2013) Image fusion algorithms using different wavelet methods and improvement techniques. Int J Adv Res Electric Electron Instrum Eng 2:5941–5948 Ragvendra BR, Ramasri DT (2013) Image fusion algorithms using different wavelet methods and improvement techniques. Int J Adv Res Electric Electron Instrum Eng 2:5941–5948
Zurück zum Zitat Rosenfield GH, Fitzpatirck-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52:223–227 Rosenfield GH, Fitzpatirck-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52:223–227
Zurück zum Zitat Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen R, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 2014(145):154–172. https://doi.org/10.1016/j.rse.2014.02.001CrossRef Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen R, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 2014(145):154–172. https://​doi.​org/​10.​1016/​j.​rse.​2014.​02.​001CrossRef
Zurück zum Zitat Santana EF, Batista LV, Silva RM, Santos CAG (2014) Multispectral image unsupervised segmentation using watershed transformation and cross-entropy minimization in different land. GISci Remote Sens 51:613–629 Santana EF, Batista LV, Silva RM, Santos CAG (2014) Multispectral image unsupervised segmentation using watershed transformation and cross-entropy minimization in different land. GISci Remote Sens 51:613–629
Zurück zum Zitat Shafian S, Maas SJ (2015) Index of soil moisture using raw landsat image digital count data in Texas high plains. Remote Sens 7:2352–2372 Shafian S, Maas SJ (2015) Index of soil moisture using raw landsat image digital count data in Texas high plains. Remote Sens 7:2352–2372
Zurück zum Zitat Shutao L, Xudong K, Leyuan F (2017) Pixel-level image fusion: a survey of the state of the art. Inf Fus 33:100–112 Shutao L, Xudong K, Leyuan F (2017) Pixel-level image fusion: a survey of the state of the art. Inf Fus 33:100–112
Zurück zum Zitat Siddiqui Y (2003) The modified IHS method for fusing satellite imagery. ASPRS 2003 annual conference. American Society for Photogrammetry and Remote Sensing (CD-ROM), Anchorage Siddiqui Y (2003) The modified IHS method for fusing satellite imagery. ASPRS 2003 annual conference. American Society for Photogrammetry and Remote Sensing (CD-ROM), Anchorage
Zurück zum Zitat Silva LP, Xavier APC, da Siva RM, Santos CAG (2019) Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecol Conserv 21:e00811 Silva LP, Xavier APC, da Siva RM, Santos CAG (2019) Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecol Conserv 21:e00811
Zurück zum Zitat Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50:1250–1265 Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50:1250–1265
Zurück zum Zitat Subramanian P, Alamelu NR, Aramudhan M (2015) Fusion of multispectral and panchromatic images and its quality assessment. J Eng Appl Sci 10:4126–4132 Subramanian P, Alamelu NR, Aramudhan M (2015) Fusion of multispectral and panchromatic images and its quality assessment. J Eng Appl Sci 10:4126–4132
Zurück zum Zitat Victor K (2015) Remote sensing of floods and flood-prone areas: an overview. J Coastal Res 31:1005–1013 Victor K (2015) Remote sensing of floods and flood-prone areas: an overview. J Coastal Res 31:1005–1013
Zurück zum Zitat Viera AJ, Garrett JM (2005) Understanding inter-observer agreement: the kappa statistic. Family Med 37:360–363 Viera AJ, Garrett JM (2005) Understanding inter-observer agreement: the kappa statistic. Family Med 37:360–363
Zurück zum Zitat Vijay S, Katiyar SK (2016) Pixel-level image fusion techniques in remote sensing: a review. Spatial Inf Res 24:475–483 Vijay S, Katiyar SK (2016) Pixel-level image fusion techniques in remote sensing: a review. Spatial Inf Res 24:475–483
Zurück zum Zitat Wei F, Shui-guang H, Zeng-shun L, Hao S, Jun-shuai L, Peng-yuan W (2016) The optimal algorithm for Multi-source RS image fusion. Methods X 3:87–101 Wei F, Shui-guang H, Zeng-shun L, Hao S, Jun-shuai L, Peng-yuan W (2016) The optimal algorithm for Multi-source RS image fusion. Methods X 3:87–101
Zurück zum Zitat Xiangzhi B, Sheng G (2018) Weight strategy aided infrared and visible image fusion utilizing the center operator from opening and closing based toggle operator. Infrared Phys Technol 92:190–192 Xiangzhi B, Sheng G (2018) Weight strategy aided infrared and visible image fusion utilizing the center operator from opening and closing based toggle operator. Infrared Phys Technol 92:190–192
Zurück zum Zitat Zhanwen L, Yan F, Hang C, Licheng J (2017) A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain. Opt Lasers Eng 97:71–77 Zhanwen L, Yan F, Hang C, Licheng J (2017) A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain. Opt Lasers Eng 97:71–77
Zurück zum Zitat Zhiqiang Z, Wang B, Sun L, Mingjie D (2016) Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inf Fus 30:15–26 Zhiqiang Z, Wang B, Sun L, Mingjie D (2016) Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inf Fus 30:15–26
Metadaten
Titel
Hybrid modelling approach for water body change detection at Chalan Beel area in northern Bangladesh
verfasst von
Riad Arefin
Sarita Gajbhiye Meshram
Celso Augusto Guimarães Santos
Richarde Marques da Silva
Jagalingam Pushparaj
Publikationsdatum
01.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 19/2020
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-020-09185-y

Weitere Artikel der Ausgabe 19/2020

Environmental Earth Sciences 19/2020 Zur Ausgabe