Skip to main content
Erschienen in:
Buchtitelbild

2022 | OriginalPaper | Buchkapitel

1. Hydrogen Energy Technology and Plasmonics

verfasst von : Katsuaki Tanabe

Erschienen in: Plasmonics for Hydrogen Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrogen energy is currently a representative clean energy without polluting or greenhouse emission in its use, in contrast to the conventional fossil fuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28:267–284CrossRef Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28:267–284CrossRef
2.
Zurück zum Zitat Turner JA (2004) Sustainable hydrogen production. Science 305:972–974PubMed Turner JA (2004) Sustainable hydrogen production. Science 305:972–974PubMed
3.
Zurück zum Zitat Penner SS (2006) Steps toward the hydrogen economy. Energy 31:33–43CrossRef Penner SS (2006) Steps toward the hydrogen economy. Energy 31:33–43CrossRef
4.
Zurück zum Zitat Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32:3797–3810CrossRef Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32:3797–3810CrossRef
5.
Zurück zum Zitat Rajeshwar K, McConnell R, Licht S (eds) (2008) Solar hydrogen generation: toward a renewable energy Future. Springer, New York, USA Rajeshwar K, McConnell R, Licht S (eds) (2008) Solar hydrogen generation: toward a renewable energy Future. Springer, New York, USA
6.
Zurück zum Zitat Stroud RM, Viano AM, Gibbons PC, Kelton KF, Misture ST (1996) Stable Ti-based quasicrystal offers prospect for improved hydrogen storage. Appl Phys Lett 69:2998–3000CrossRef Stroud RM, Viano AM, Gibbons PC, Kelton KF, Misture ST (1996) Stable Ti-based quasicrystal offers prospect for improved hydrogen storage. Appl Phys Lett 69:2998–3000CrossRef
7.
Zurück zum Zitat Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358PubMedCrossRef Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358PubMedCrossRef
8.
Zurück zum Zitat Adams BD, Chen A (2011) The role of palladium in a hydrogen economy. Mater Today 14:282–289CrossRef Adams BD, Chen A (2011) The role of palladium in a hydrogen economy. Mater Today 14:282–289CrossRef
9.
Zurück zum Zitat Li GQ, Kobayashi H, Taylor JM, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Toh S, Matsumura S, Kitagawa H (2014) Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat Mater 13:802–806PubMedCrossRef Li GQ, Kobayashi H, Taylor JM, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Toh S, Matsumura S, Kitagawa H (2014) Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat Mater 13:802–806PubMedCrossRef
10.
Zurück zum Zitat Ley MB, Jepsen LH, Lee YS, Cho YW, von Colbe JMB, Dornheim M, Rokni M, Jensen JO, Sloth M, Filinchuk Y, Jorgensen JE, Besenbacher F, Jensen TR (2014) Complex hydrides for hydrogen storage—new perspectives. Mater Today 17:122–128CrossRef Ley MB, Jepsen LH, Lee YS, Cho YW, von Colbe JMB, Dornheim M, Rokni M, Jensen JO, Sloth M, Filinchuk Y, Jorgensen JE, Besenbacher F, Jensen TR (2014) Complex hydrides for hydrogen storage—new perspectives. Mater Today 17:122–128CrossRef
11.
Zurück zum Zitat Mohtadi R, Orimo S (2017) The renaissance of hydrides as energy materials. Nat Rev Mater 2:16091 Mohtadi R, Orimo S (2017) The renaissance of hydrides as energy materials. Nat Rev Mater 2:16091
12.
Zurück zum Zitat Yamagishi R, Kojima T, Kameoka S, Okuyama D, Sato TJ, Nishimura C, Tsai AP (2017) Creating the hydrogen absorption capability of CeNi5 through the addition of Al. Int J Hydrogen Energy 42:21832–21840CrossRef Yamagishi R, Kojima T, Kameoka S, Okuyama D, Sato TJ, Nishimura C, Tsai AP (2017) Creating the hydrogen absorption capability of CeNi5 through the addition of Al. Int J Hydrogen Energy 42:21832–21840CrossRef
13.
Zurück zum Zitat Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881CrossRef Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881CrossRef
14.
Zurück zum Zitat Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Heidelberg, GermanyCrossRef Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Heidelberg, GermanyCrossRef
15.
Zurück zum Zitat Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRef Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRef
16.
Zurück zum Zitat Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—A route to nanoscale optical devices. Adv Mater 13:1501–1505 Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—A route to nanoscale optical devices. Adv Mater 13:1501–1505
17.
Zurück zum Zitat Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830PubMedCrossRef Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830PubMedCrossRef
18.
Zurück zum Zitat Brongersma ML, Kik PG (eds) (2007) Surface plasmon nanophotonics. Springer, Dordrecht, The Netherlands Brongersma ML, Kik PG (eds) (2007) Surface plasmon nanophotonics. Springer, Dordrecht, The Netherlands
19.
Zurück zum Zitat Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York, USACrossRef Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York, USACrossRef
20.
Zurück zum Zitat Shahbazyan TV, Stockman MI (eds) (2013) Plasmonics: theory and applications. Springer, Dordrecht, The Netherlands Shahbazyan TV, Stockman MI (eds) (2013) Plasmonics: theory and applications. Springer, Dordrecht, The Netherlands
21.
Zurück zum Zitat Bozhevolnyi SI, Martin-Moreno L, Garcia-Vidal F (eds) (2017) Quantum plasmonics. Springer, Cham, Switzerland Bozhevolnyi SI, Martin-Moreno L, Garcia-Vidal F (eds) (2017) Quantum plasmonics. Springer, Cham, Switzerland
22.
Zurück zum Zitat Kim S, Jin JH, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760PubMedCrossRef Kim S, Jin JH, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760PubMedCrossRef
23.
Zurück zum Zitat Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728CrossRef Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728CrossRef
24.
Zurück zum Zitat Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204PubMedCrossRef Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204PubMedCrossRef
25.
Zurück zum Zitat Jeong S, Kim MW, Jo YR, Kim NY, Kang D, Lee SY, Yim SY, Kim BJ, Kim JH (2019) Hollow porous gold nanoshells with controlled nanojunctions for highly tunable plasmon resonances and intense field enhancements for surface-enhanced Raman scattering. ACS Appl Mater Interfaces 11:44458–44465PubMedCrossRef Jeong S, Kim MW, Jo YR, Kim NY, Kang D, Lee SY, Yim SY, Kim BJ, Kim JH (2019) Hollow porous gold nanoshells with controlled nanojunctions for highly tunable plasmon resonances and intense field enhancements for surface-enhanced Raman scattering. ACS Appl Mater Interfaces 11:44458–44465PubMedCrossRef
26.
Zurück zum Zitat da Jornada FH, Xian LD, Rubio A, Louie SG (2020) Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals. Nat Commun 11:1013PubMedPubMedCentralCrossRef da Jornada FH, Xian LD, Rubio A, Louie SG (2020) Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals. Nat Commun 11:1013PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Weber WH, McCarthy SL (1975) Surface-plasmon resonance as a sensitive optical probe of metal-film properties. Phys Rev B 12:5643–5650CrossRef Weber WH, McCarthy SL (1975) Surface-plasmon resonance as a sensitive optical probe of metal-film properties. Phys Rev B 12:5643–5650CrossRef
28.
Zurück zum Zitat Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106PubMedCrossRef Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106PubMedCrossRef
29.
Zurück zum Zitat Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604PubMedCrossRef Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604PubMedCrossRef
30.
Zurück zum Zitat Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493PubMedCrossRef Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493PubMedCrossRef
31.
Zurück zum Zitat Oliveira LC, Lima AMN, Thirstrup C, Neff HF (2019) Surface plasmon resonance sensors: a materials guide to design, characterization, optimization, and usage, 2nd edn. Springer, Cham, SwitzerlandCrossRef Oliveira LC, Lima AMN, Thirstrup C, Neff HF (2019) Surface plasmon resonance sensors: a materials guide to design, characterization, optimization, and usage, 2nd edn. Springer, Cham, SwitzerlandCrossRef
32.
Zurück zum Zitat Shackleford JA, Grote R, Currie M, Spanier JE, Nabet B (2009) Integrated plasmonic lens photodetector. Appl Phys Lett 94:083501 Shackleford JA, Grote R, Currie M, Spanier JE, Nabet B (2009) Integrated plasmonic lens photodetector. Appl Phys Lett 94:083501
33.
Zurück zum Zitat Berini P (2014) Surface plasmon photodetectors and their applications. Laser Photon Rev 8:197–220CrossRef Berini P (2014) Surface plasmon photodetectors and their applications. Laser Photon Rev 8:197–220CrossRef
34.
Zurück zum Zitat Echtermeyer TJ, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari AC (2016) Surface plasmon polariton graphene photodetectors. Nano Lett 16:8–20PubMedCrossRef Echtermeyer TJ, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari AC (2016) Surface plasmon polariton graphene photodetectors. Nano Lett 16:8–20PubMedCrossRef
35.
Zurück zum Zitat Vuckovic J, Loncar M, Scherer A (2000) Surface plasmon enhanced light-emitting diode. IEEE J Quantum Electron 36:1131–1144CrossRef Vuckovic J, Loncar M, Scherer A (2000) Surface plasmon enhanced light-emitting diode. IEEE J Quantum Electron 36:1131–1144CrossRef
36.
Zurück zum Zitat Hobson PA, Wedge S, Wasey JAE, Sage I, Barnes WL (2002) Surface plasmon mediated emission from organic light-emitting diodes. Adv Mater 14:1393–1396CrossRef Hobson PA, Wedge S, Wasey JAE, Sage I, Barnes WL (2002) Surface plasmon mediated emission from organic light-emitting diodes. Adv Mater 14:1393–1396CrossRef
37.
Zurück zum Zitat Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605PubMedCrossRef Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605PubMedCrossRef
38.
Zurück zum Zitat Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88:161102 Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88:161102
39.
Zurück zum Zitat Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402 Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402
40.
Zurück zum Zitat Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA (2008) Lasing spaser. Nat Photon 2:351–354CrossRef Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA (2008) Lasing spaser. Nat Photon 2:351–354CrossRef
41.
Zurück zum Zitat Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112PubMedCrossRef Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112PubMedCrossRef
42.
Zurück zum Zitat Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632PubMedCrossRef Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632PubMedCrossRef
43.
Zurück zum Zitat Berini P, De Leon I (2012) Surface plasmon–polariton amplifiers and lasers. Nat Photon 6:16–24CrossRef Berini P, De Leon I (2012) Surface plasmon–polariton amplifiers and lasers. Nat Photon 6:16–24CrossRef
44.
Zurück zum Zitat Hayashi S, Kozaru K, Yamamoto K (1991) Enhancement of photoelectric conversion efficiency by surface-plasmon excitation: A test with an organic solar-cell. Solid State Commun 79:763–767CrossRef Hayashi S, Kozaru K, Yamamoto K (1991) Enhancement of photoelectric conversion efficiency by surface-plasmon excitation: A test with an organic solar-cell. Solid State Commun 79:763–767CrossRef
45.
Zurück zum Zitat Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) Enhancement of the absorption coefficient of cis-(NCS)2 Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver island film. J Phys Chem B 101:5153–5157CrossRef Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) Enhancement of the absorption coefficient of cis-(NCS)2 Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver island film. J Phys Chem B 101:5153–5157CrossRef
46.
Zurück zum Zitat Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRef Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRef
47.
Zurück zum Zitat Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106 Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106
48.
Zurück zum Zitat Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105 Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105
49.
Zurück zum Zitat Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett93:121904 Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett93:121904
50.
Zurück zum Zitat Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213PubMedCrossRef Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213PubMedCrossRef
51.
Zurück zum Zitat Tanabe K (2016) A simple optical model well explains plasmonic-nanoparticle-enhanced spectral photocurrent in optically thin solar cells. Nanoscale Res Lett 11:236PubMedPubMedCentralCrossRef Tanabe K (2016) A simple optical model well explains plasmonic-nanoparticle-enhanced spectral photocurrent in optically thin solar cells. Nanoscale Res Lett 11:236PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Shen T, Tan Q, Dai Z, Padture NP, Pacifici D (2020) Arrays of plasmonic nanostructures for absorption enhancement in perovskite thin films. Nanomaterials 10:1342PubMedCentralCrossRef Shen T, Tan Q, Dai Z, Padture NP, Pacifici D (2020) Arrays of plasmonic nanostructures for absorption enhancement in perovskite thin films. Nanomaterials 10:1342PubMedCentralCrossRef
54.
Zurück zum Zitat Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980PubMedCrossRef Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980PubMedCrossRef
55.
Zurück zum Zitat Alu A, Engheta N (2008) Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett 100:113901 Alu A, Engheta N (2008) Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett 100:113901
56.
Zurück zum Zitat Xu Y, Fu Y, Chen H (2016) Planar gradient metamaterials. Nat Rev Mater 1:16067 Xu Y, Fu Y, Chen H (2016) Planar gradient metamaterials. Nat Rev Mater 1:16067
57.
Zurück zum Zitat Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat EO, Caglayan H, Ozbay E, Kocabas C (2018) Electrically switchable metadevices via graphene. Sci Adv 4:eaao1749 Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat EO, Caglayan H, Ozbay E, Kocabas C (2018) Electrically switchable metadevices via graphene. Sci Adv 4:eaao1749
Metadaten
Titel
Hydrogen Energy Technology and Plasmonics
verfasst von
Katsuaki Tanabe
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-88275-4_1