Skip to main content
Erschienen in: Advances in Manufacturing 3/2017

28.06.2017

Hydrogenation of graphene nanoflakes and C–H bond dissociation of hydrogenated graphene nanoflakes: a density functional theory study

verfasst von: Sheng Tao, Hui-Ting Liu, Liu-Ming Yan, Bao-Hua Yue, Ai-Jun Li

Erschienen in: Advances in Manufacturing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Gibbs free energy change for the hydrogenation of graphene nanoflakes C n (n = 24, 28, 30 and 32) and the C–H bond dissociation energy of hydrogenated graphene nanoflakes C n H m (n = 24, 28, 30 and 32; and m = 1, 2 and 3) are evaluated using density functional theory calculations. It is concluded that the graphene nanoflakes and hydrogenated graphene nanoflakes accept the orth-aryne structure with peripheral carbon atoms bonded via the most triple bonds and leaving the least unpaired dangling electrons. Five-membered rings are formed at the deep bay sites attributing to the stabilization effect from the pairing of dangling electrons. The hydrogenation reactions which eliminate one unpaired dangling electron and thus decrease the overall multiplicity of the graphene nanoflakes or hydrogenated graphene nanoflakes are spontaneous with negative or near zero Gibbs free energy change. And the resulting C–H bonds are stable with bond dissociation energy in the same range as those of aromatic compounds. The other C–H bonds are not as stable attributing to the excessive unpaired dangling electrons being filled into the C–H anti-bond orbital.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
2.
Zurück zum Zitat Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718–747CrossRef Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718–747CrossRef
3.
Zurück zum Zitat Mochalin VN, Shenderova O, Ho D et al (2012) The properties and applications of nanodiamonds. Nat Nano 7(1):11–23CrossRef Mochalin VN, Shenderova O, Ho D et al (2012) The properties and applications of nanodiamonds. Nat Nano 7(1):11–23CrossRef
4.
Zurück zum Zitat Li H, Kang Z, Liu Y et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253CrossRef Li H, Kang Z, Liu Y et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253CrossRef
5.
6.
Zurück zum Zitat Hou J, Shao Y, Ellis MW et al (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402CrossRef Hou J, Shao Y, Ellis MW et al (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402CrossRef
7.
Zurück zum Zitat Börrnert F, Börrnert C, Gorantla S et al (2010) Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. Phys Rev B 81(8):085439CrossRef Börrnert F, Börrnert C, Gorantla S et al (2010) Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. Phys Rev B 81(8):085439CrossRef
8.
Zurück zum Zitat Eisler S, Slepkov AD, Elliott E et al (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127(8):2666–2676CrossRef Eisler S, Slepkov AD, Elliott E et al (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127(8):2666–2676CrossRef
9.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
10.
Zurück zum Zitat Mayani VJ, Mayani SV, Wook KS (2012) Development of nanocarbon gold composite for heterogeneous catalytic oxidation. Mater Lett 87:90–93CrossRef Mayani VJ, Mayani SV, Wook KS (2012) Development of nanocarbon gold composite for heterogeneous catalytic oxidation. Mater Lett 87:90–93CrossRef
11.
Zurück zum Zitat Liang Y, Li Y, Wang H et al (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036CrossRef Liang Y, Li Y, Wang H et al (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036CrossRef
12.
Zurück zum Zitat Zhao H, Chang Y, Liu M et al (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49(3):234–236CrossRef Zhao H, Chang Y, Liu M et al (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49(3):234–236CrossRef
13.
Zurück zum Zitat Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45(10):1759–1769CrossRef Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45(10):1759–1769CrossRef
14.
Zurück zum Zitat Dai L, Xue Y, Qu L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892CrossRef Dai L, Xue Y, Qu L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892CrossRef
15.
Zurück zum Zitat Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707–714CrossRef Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707–714CrossRef
16.
Zurück zum Zitat Jin YZ, Gao C, Hsu WK et al (2005) Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43(9):1944–1953CrossRef Jin YZ, Gao C, Hsu WK et al (2005) Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43(9):1944–1953CrossRef
17.
Zurück zum Zitat Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon 50(10):3376–3398CrossRef Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon 50(10):3376–3398CrossRef
18.
Zurück zum Zitat Niu T, Zhou M, Zhang J et al (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135(22):8409–8414CrossRef Niu T, Zhou M, Zhang J et al (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135(22):8409–8414CrossRef
19.
Zurück zum Zitat Boukhvalov DW, Feng X, Müllen K (2011) First-principles modeling of the polycyclic aromatic hydrocarbons reduction. J Phys Chem C 115(32):16001–16005CrossRef Boukhvalov DW, Feng X, Müllen K (2011) First-principles modeling of the polycyclic aromatic hydrocarbons reduction. J Phys Chem C 115(32):16001–16005CrossRef
20.
Zurück zum Zitat Kosimov DP, Dzhurakhalov AA, Peeters FM (2010) Carbon clusters: from ring structures to nanographene. Phys Rev B 81(19):195414CrossRef Kosimov DP, Dzhurakhalov AA, Peeters FM (2010) Carbon clusters: from ring structures to nanographene. Phys Rev B 81(19):195414CrossRef
21.
Zurück zum Zitat Liu H, Yan L, Yue B et al (2014) Hydrogen transfer reaction in polycyclic aromatic hydrocarbon radicals. J Phys Chem A 118(25):4405–4414CrossRef Liu H, Yan L, Yue B et al (2014) Hydrogen transfer reaction in polycyclic aromatic hydrocarbon radicals. J Phys Chem A 118(25):4405–4414CrossRef
22.
Zurück zum Zitat Xie L, Yan L, Sun C et al (2012) Force field model and molecular dynamics simulation of polyynes. Comput Theor Chem 997:14–18CrossRef Xie L, Yan L, Sun C et al (2012) Force field model and molecular dynamics simulation of polyynes. Comput Theor Chem 997:14–18CrossRef
23.
Zurück zum Zitat Qi J, Zhu H (2014) Theoretical study on the structures and properties of hydrogen-doped cationic carbon clusters C n H2 + (n = 3–10). Chem Phys 431–432:20–25CrossRef Qi J, Zhu H (2014) Theoretical study on the structures and properties of hydrogen-doped cationic carbon clusters C n H2 + (n = 3–10). Chem Phys 431–432:20–25CrossRef
24.
Zurück zum Zitat Wohner N, Lam PK, Sattler K (2015) Systematic energetics study of graphene nanoflakes: from armchair and zigzag to rough edges with pronounced protrusions and overcrowded bays. Carbon 82:523–537CrossRef Wohner N, Lam PK, Sattler K (2015) Systematic energetics study of graphene nanoflakes: from armchair and zigzag to rough edges with pronounced protrusions and overcrowded bays. Carbon 82:523–537CrossRef
25.
Zurück zum Zitat Hu W, Lin L, Yang C et al (2014) Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. J Chem Phys 141(21):214704CrossRef Hu W, Lin L, Yang C et al (2014) Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. J Chem Phys 141(21):214704CrossRef
26.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB et al (2009) GAUSSIAN 09, Revision D.02. Gaussian Inc., Wallingford Frisch MJ, Trucks GW, Schlegel HB et al (2009) GAUSSIAN 09, Revision D.02. Gaussian Inc., Wallingford
27.
Zurück zum Zitat Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRef Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRef
28.
Zurück zum Zitat Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269CrossRef Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269CrossRef
29.
Zurück zum Zitat Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRef Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRef
30.
Zurück zum Zitat Feng C, Lin CS, Fan W et al (2009) Stacking of polycyclic aromatic hydrocarbons as prototype for graphene multilayers, studied using density functional theory augmented with a dispersion term. J Chem Phys 131(19):194702CrossRef Feng C, Lin CS, Fan W et al (2009) Stacking of polycyclic aromatic hydrocarbons as prototype for graphene multilayers, studied using density functional theory augmented with a dispersion term. J Chem Phys 131(19):194702CrossRef
31.
Zurück zum Zitat McMurry J (1992) Organic chemistry. 3rd edn. Pacific Grove, California, p 29 McMurry J (1992) Organic chemistry. 3rd edn. Pacific Grove, California, p 29
32.
Zurück zum Zitat Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263CrossRef Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263CrossRef
33.
Zurück zum Zitat Davico GE, Bierbaum VM, DePuy CH et al (1995) The C–H bond energy of benzene. J Am Chem Soc 117(9):2590–2599CrossRef Davico GE, Bierbaum VM, DePuy CH et al (1995) The C–H bond energy of benzene. J Am Chem Soc 117(9):2590–2599CrossRef
34.
Zurück zum Zitat Barckholtz C, Barckholtz TA, Hadad CM (1999) C–H and N–H bond dissociation energies of small aromatic hydrocarbons. J Am Chem Soc 121(3):491–500CrossRef Barckholtz C, Barckholtz TA, Hadad CM (1999) C–H and N–H bond dissociation energies of small aromatic hydrocarbons. J Am Chem Soc 121(3):491–500CrossRef
Metadaten
Titel
Hydrogenation of graphene nanoflakes and C–H bond dissociation of hydrogenated graphene nanoflakes: a density functional theory study
verfasst von
Sheng Tao
Hui-Ting Liu
Liu-Ming Yan
Bao-Hua Yue
Ai-Jun Li
Publikationsdatum
28.06.2017
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 3/2017
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-017-0180-y

Weitere Artikel der Ausgabe 3/2017

Advances in Manufacturing 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.