Skip to main content
Erschienen in: Polymer Science, Series D 3/2020

01.07.2020

Hydrolytic Degradation of Polylactide in Distilled Water and Seawater

verfasst von: Yu. V. Tertyshnaya, A. A. Popov

Erschienen in: Polymer Science, Series D | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the work, the effect of 120-day exposure to distilled water and seawater at 23°C on the structure and properties of polylactide was studied. It was found that the melting and glass transition temperature of polylactide decreased by 2°C in distilled water, while the crystallinity degree increased by 9 and 5% in distilled water and in seawater, respectively. Atomic force microscopy revealed pores defects with a diameter of 150–200 and 170–230 μm after exposure to seawater and distilled water, respectively. Elongation and tensile strength at break were significantly reduced during the hydrolytic degradation of polylactide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. K. A. Barnes, A. Walters, and L. Goncalves, “Macroplastics at sea around Antarctica,” Mar. Environ. Res. 70, 250–252 (2010).CrossRef D. K. A. Barnes, A. Walters, and L. Goncalves, “Macroplastics at sea around Antarctica,” Mar. Environ. Res. 70, 250–252 (2010).CrossRef
2.
Zurück zum Zitat Yu. V. Tertyshnaya and L. S. Shibryaeva, “Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water,” Polym. Sci., Ser. B 55, 164–168 (2013).CrossRef Yu. V. Tertyshnaya and L. S. Shibryaeva, “Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water,” Polym. Sci., Ser. B 55, 164–168 (2013).CrossRef
3.
Zurück zum Zitat M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, “The effect of environmental factors on biodegradable polylactide-based materials,” Polym. Sci., Ser. D 10, 289–292 (2017). M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, “The effect of environmental factors on biodegradable polylactide-based materials,” Polym. Sci., Ser. D 10, 289–292 (2017).
4.
Zurück zum Zitat L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Prog. Polym. Sci. 33, 820 (2008).CrossRef L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Prog. Polym. Sci. 33, 820 (2008).CrossRef
5.
Zurück zum Zitat D. Garlotta, “A literature review of polylactid acid,” J. Polym. Environ. 9, 63–84 (2001).CrossRef D. Garlotta, “A literature review of polylactid acid,” J. Polym. Environ. 9, 63–84 (2001).CrossRef
6.
Zurück zum Zitat Y. Young, S. W. Lee, S. J. Lee, and W. H. Park, “Thermal interfiber bonding of electrospun poly(L-lactid acid) nanofiber,” Mater. Lett. 60, 1331–1333 (2006).CrossRef Y. Young, S. W. Lee, S. J. Lee, and W. H. Park, “Thermal interfiber bonding of electrospun poly(L-lactid acid) nanofiber,” Mater. Lett. 60, 1331–1333 (2006).CrossRef
7.
Zurück zum Zitat M. Obarzanek-Fojt, Yv. Elbs-Glatz, E. Lizundia, L. Diener, S.-R. Sarasua, and A. Bruinink, “From implantation to degradation—are poly (L-lactide)/multiwall carbon nanotube composite materials really cytocompatible?,” Nanomed.: Nanotechnol. Biol. Med. 10 (5), 1041 (2014).CrossRef M. Obarzanek-Fojt, Yv. Elbs-Glatz, E. Lizundia, L. Diener, S.-R. Sarasua, and A. Bruinink, “From implantation to degradation—are poly (L-lactide)/multiwall carbon nanotube composite materials really cytocompatible?,” Nanomed.: Nanotechnol. Biol. Med. 10 (5), 1041 (2014).CrossRef
8.
Zurück zum Zitat R. Ortiz, S. Moreno-Flores, I. Quintana, Md. M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater. Sci. Eng: C 37, 241 (2014).CrossRef R. Ortiz, S. Moreno-Flores, I. Quintana, Md. M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater. Sci. Eng: C 37, 241 (2014).CrossRef
9.
Zurück zum Zitat Yu. V. Tertyshnaya, S. G. Karpova, and A. A. Popov, “Effect of aqueous medium on the molecular mobility of polylactide,” Russ. J. Phys. Chem. B 36 (6), 84–91 (2017). Yu. V. Tertyshnaya, S. G. Karpova, and A. A. Popov, “Effect of aqueous medium on the molecular mobility of polylactide,” Russ. J. Phys. Chem. B 36 (6), 84–91 (2017).
10.
Zurück zum Zitat V. K. Holm, S. Ndoni, and J. Risbo, “The stability of poly(lactic acid) packaging films as influenced by humidity and temperature,” J. Food Sci. 71, 40–44 (2006).CrossRef V. K. Holm, S. Ndoni, and J. Risbo, “The stability of poly(lactic acid) packaging films as influenced by humidity and temperature,” J. Food Sci. 71, 40–44 (2006).CrossRef
11.
Zurück zum Zitat V. Piemonte and F. Gironi, “Kinetics of hydrolytic degradation of PLA,” J. Polym. Environ. 21, 313–318 (2013).CrossRef V. Piemonte and F. Gironi, “Kinetics of hydrolytic degradation of PLA,” J. Polym. Environ. 21, 313–318 (2013).CrossRef
12.
Zurück zum Zitat C. Stathokostopoulou and P. A. Tarantili, “Preparation, characterization and drug release studies from poly(D,L-lactic acid)/organoclay nanocomposites films,” J. Macromol. Sci. Pure Appl. Chem. 51, 117–124 (2014).CrossRef C. Stathokostopoulou and P. A. Tarantili, “Preparation, characterization and drug release studies from poly(D,L-lactic acid)/organoclay nanocomposites films,” J. Macromol. Sci. Pure Appl. Chem. 51, 117–124 (2014).CrossRef
13.
Zurück zum Zitat Q. Zhou and M. Xanthos, “Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides,” Polym. Degrad. Stab. 93, 1450–1459 (2008).CrossRef Q. Zhou and M. Xanthos, “Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides,” Polym. Degrad. Stab. 93, 1450–1459 (2008).CrossRef
14.
Zurück zum Zitat E. Olewnik-Kruszkowska, “Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites,” Polym. Degrad. Stab. 129, 87–95 (2016).CrossRef E. Olewnik-Kruszkowska, “Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites,” Polym. Degrad. Stab. 129, 87–95 (2016).CrossRef
15.
Zurück zum Zitat G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, and U. S. Ishiaku, “Water absorption and enzymatic degradation of polylactic acid/rice starch composites,” Polym. Degrad. Stab. 90, 488– 500 (2005).CrossRef G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, and U. S. Ishiaku, “Water absorption and enzymatic degradation of polylactic acid/rice starch composites,” Polym. Degrad. Stab. 90, 488– 500 (2005).CrossRef
16.
Zurück zum Zitat G. E. Johnson, in Water in Polymers, Ed. by S. P. Rowland (Am. Chem. Soc., Washington, D.C., 1980), p. 441. G. E. Johnson, in Water in Polymers, Ed. by S. P. Rowland (Am. Chem. Soc., Washington, D.C., 1980), p. 441.
17.
Zurück zum Zitat M. O. Gallyamov, Diffusion in Polymers. Visualization of Solutions to Typical Diffusion Problems (Krasand, 2014) [in Russian]. M. O. Gallyamov, Diffusion in Polymers. Visualization of Solutions to Typical Diffusion Problems (Krasand, 2014) [in Russian].
18.
Zurück zum Zitat Y. Ohtani, K. Okumura, and A. Kawaguchi, “Crystallization behavior of amorphous poly(L-lactide),” J. Macromol. Sci., Part B: Phys. 42, 875–888 (2003).CrossRef Y. Ohtani, K. Okumura, and A. Kawaguchi, “Crystallization behavior of amorphous poly(L-lactide),” J. Macromol. Sci., Part B: Phys. 42, 875–888 (2003).CrossRef
19.
Zurück zum Zitat Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, “Effect of temperature on the molecular mobility in polylactide,” Polym. Sci., Ser. A 58 (1), 50 (2016).CrossRef Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, “Effect of temperature on the molecular mobility in polylactide,” Polym. Sci., Ser. A 58 (1), 50 (2016).CrossRef
20.
Zurück zum Zitat M. Deroine, A. Le Duigou, Y.-M. Corre, P.-Y. Le Gac, P. Davies, G. Cesar, and S. Bruzaud, “Accelerated aging of polylactide in aqueous environment: Comparative study between distilled water and seawater,” Polym. Degrad. Stab. 108, 319–329 (2014).CrossRef M. Deroine, A. Le Duigou, Y.-M. Corre, P.-Y. Le Gac, P. Davies, G. Cesar, and S. Bruzaud, “Accelerated aging of polylactide in aqueous environment: Comparative study between distilled water and seawater,” Polym. Degrad. Stab. 108, 319–329 (2014).CrossRef
Metadaten
Titel
Hydrolytic Degradation of Polylactide in Distilled Water and Seawater
verfasst von
Yu. V. Tertyshnaya
A. A. Popov
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series D / Ausgabe 3/2020
Print ISSN: 1995-4212
Elektronische ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421220030211

Weitere Artikel der Ausgabe 3/2020

Polymer Science, Series D 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.