Skip to main content

2024 | OriginalPaper | Buchkapitel

27. Hygrothermal Functions

verfasst von : José Luis Moro

Erschienen in: Building-Construction Design - From Principle to Detail

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

 Hygrothermal functions ensure that the required environmental conditions are met which need to be guaranteed in order for the interior spaces to be habitable, safe, and healthy. This pertains basically envelope components, both interior and exterior. From a constructional point of view, the most important factor influencing the physical appropriateness of a particular envelope component in this respect is its specific layering from different materials. Depending on the material properties of the layers, certain sequences are unobjectionable from a point of view of buildings physics, other, in contrast, are potentially failure-prone and hence need to be avoided in constructional design. A proper knowledge of the physical processes governing the behavior of surface components separating spaces with a gradient of different media or physical conditions is therefore fundamental to a successful detail design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the absence of an introduced term, we propose the term of vapour trap since this mechanism is so dangerous because it impedes water vapour from diffusing out of the construction.
 
2
Although the term vapour control has not yet been widely used in technical parlance, we propose introducing it as an adequate concise description of this function.
 
3
Even though the focus of the work is on building construction, not on building physics per se (this is not a building-physics textbook), it still seems appropriate to recall the essential parameters of hygrothermal processes. This is particularly helpful in order to better understand and apply the normative requirements to be discussed in the following. It must be emphasised, however, that the balancing encompassing the entire building, as it is carried out in the EnEV, cannot be dealt with in more detail in this context.
 
4
EN ISO 10211 defines the temperature factor at the indoor surface as the “difference between the temperature of the indoor surface and the outdoor air temperature divided by the temperature difference between the indoor and outdoor air, calculated with a heat transfer resistance Rsi at the indoor surface” (3.14).
 
Literatur
1.
Zurück zum Zitat Bläsi W (2008) Bauphysik. 7. Aufl., Haan-Gruiten: Verl. Europa-Lehrmittel Nourney, Vollmer Bläsi W (2008) Bauphysik. 7. Aufl., Haan-Gruiten: Verl. Europa-Lehrmittel Nourney, Vollmer
2.
Zurück zum Zitat Cziesielski E (Hg) (2005) Bauphysik-Kalender 2005. Ernst & Sohn, Berlin Cziesielski E (Hg) (2005) Bauphysik-Kalender 2005. Ernst & Sohn, Berlin
3.
Zurück zum Zitat Daniels K (1991) RWE Technologie des ökologischen Bauens. Birkhäuser, Basel, Boston, Berlin Daniels K (1991) RWE Technologie des ökologischen Bauens. Birkhäuser, Basel, Boston, Berlin
4.
Zurück zum Zitat Gösele K, Schüle W (1989) Schall, Wärme, Feuchte. 9. überarb. Aufl., Bauverlag, Wiesbaden, Berlin Gösele K, Schüle W (1989) Schall, Wärme, Feuchte. 9. überarb. Aufl., Bauverlag, Wiesbaden, Berlin
5.
Zurück zum Zitat Häupl P, Willems W (Ed) (2013) Lehrbuch der Bauphysik: Schall – Wärme – Feuchte – Licht – Brand – Klima. 7., vollst. überarb. und aktualisierte Aufl., Springer Vieweg, Wiesbaden Häupl P, Willems W (Ed) (2013) Lehrbuch der Bauphysik: Schall – Wärme – Feuchte – Licht – Brand – Klima. 7., vollst. überarb. und aktualisierte Aufl., Springer Vieweg, Wiesbaden
6.
Zurück zum Zitat RWE-Energie-Aktiengesellschaft (2004) RWE Energie Bau-Handbuch. 13. Ausgabe, EW Medien und Kongresse, Frankfurt am Main RWE-Energie-Aktiengesellschaft (2004) RWE Energie Bau-Handbuch. 13. Ausgabe, EW Medien und Kongresse, Frankfurt am Main
7.
Zurück zum Zitat Zürcher C, Frank T (2014) Bauphysik: Bau & Energie. vdf Hochschulverlag, Zürich Zürcher C, Frank T (2014) Bauphysik: Bau & Energie. vdf Hochschulverlag, Zürich
8.
Zurück zum Zitat EN 12154: 2000-06 Curtain walling—Watertightness—Performance requirements and classification EN 12154: 2000-06 Curtain walling—Watertightness—Performance requirements and classification
9.
Zurück zum Zitat EN 12155: 2000-10 Curtain walling—Watertightness—Laboratory test under static pressure EN 12155: 2000-10 Curtain walling—Watertightness—Laboratory test under static pressure
10.
Zurück zum Zitat EN 12207: 2017-03 Windows and doors—Air permeability—Classification EN 12207: 2017-03 Windows and doors—Air permeability—Classification
11.
Zurück zum Zitat EN 12208: 2000-06 Windows and doors—Watertightness—Classification EN 12208: 2000-06 Windows and doors—Watertightness—Classification
12.
Zurück zum Zitat EN ISO 6946: 2018-03 Building components and building elements—Thermal resistance and thermal transmittance—Calculation methods EN ISO 6946: 2018-03 Building components and building elements—Thermal resistance and thermal transmittance—Calculation methods
13.
Zurück zum Zitat EN ISO 7345: 2018-07 Thermal performance of buildings and building components—Physical quantities and definitions EN ISO 7345: 2018-07 Thermal performance of buildings and building components—Physical quantities and definitions
14.
Zurück zum Zitat EN ISO 9346: 2008-02 Hygrothermal performance of buildings and building materials—Physical quantities for mass transfer—Vocabulary EN ISO 9346: 2008-02 Hygrothermal performance of buildings and building materials—Physical quantities for mass transfer—Vocabulary
15.
Zurück zum Zitat EN ISO 9972: 2018-12 Thermal performance of buildings—Determination of air permeability of buildings—Fan pressurization method EN ISO 9972: 2018-12 Thermal performance of buildings—Determination of air permeability of buildings—Fan pressurization method
16.
Zurück zum Zitat EN ISO 10077: Thermal performance of windows, doors and shutters—Calculation of thermal transmittance. (a) Part 1: 2020-10 General. (b) Part 2: 2018-01 Numerical method for frames EN ISO 10077: Thermal performance of windows, doors and shutters—Calculation of thermal transmittance. (a) Part 1: 2020-10 General. (b) Part 2: 2018-01 Numerical method for frames
17.
Zurück zum Zitat EN ISO 10211: 2018-03 Thermal bridges in building construction—Heat flows and surface temperatures—Detailed calculations EN ISO 10211: 2018-03 Thermal bridges in building construction—Heat flows and surface temperatures—Detailed calculations
18.
Zurück zum Zitat EN ISO 10456: 2010-05 Building materials and products—Hygrothermal properties—Tabulated design values and procedures for determining declared and design thermal values EN ISO 10456: 2010-05 Building materials and products—Hygrothermal properties—Tabulated design values and procedures for determining declared and design thermal values
19.
Zurück zum Zitat EN ISO 12631: 2018-01 Thermal performance of curtain walling—Calculation of thermal transmittance EN ISO 12631: 2018-01 Thermal performance of curtain walling—Calculation of thermal transmittance
20.
Zurück zum Zitat EN ISO 13370: 2018-03 Thermal performance of buildings—Heat transfer via the ground—Calculation methods EN ISO 13370: 2018-03 Thermal performance of buildings—Heat transfer via the ground—Calculation methods
21.
Zurück zum Zitat DIN 1946: Ventilation and air conditioning. (a) Part 6: 2019-12 Ventilation for residential buildings—General requirements, requirements for design, construction, commissioning and handover as well as maintenance DIN 1946: Ventilation and air conditioning. (a) Part 6: 2019-12 Ventilation for residential buildings—General requirements, requirements for design, construction, commissioning and handover as well as maintenance
22.
Zurück zum Zitat DIN 4108: Thermal protection and energy economy in buildings. (a) Part 2: 2013-02 Minimum requirements to thermal insulation. (b) Part 3: 2018-10 Protection against moisture subject to climate conditions—Requirements, calculation methods and directions for planning and construction. (c) Part 4: 2020-11 Hygrothermal design values. (d) Part 7: 2011-01 Air tightness of buildings—Requirements, recommendations and examples for planning and performance. (e) Part 10: 2021-02 Application-related requirements for thermal insulation materials. (f) Part 11: 2018-11 Minimum requirements to the durability of bond strength with adhesive tapes and adhesive masses for the establishment of airtight layers. (g) Supplement 2: 2019-06 Thermal bridges—Examples for planning and performance DIN 4108: Thermal protection and energy economy in buildings. (a) Part 2: 2013-02 Minimum requirements to thermal insulation. (b) Part 3: 2018-10 Protection against moisture subject to climate conditions—Requirements, calculation methods and directions for planning and construction. (c) Part 4: 2020-11 Hygrothermal design values. (d) Part 7: 2011-01 Air tightness of buildings—Requirements, recommendations and examples for planning and performance. (e) Part 10: 2021-02 Application-related requirements for thermal insulation materials. (f) Part 11: 2018-11 Minimum requirements to the durability of bond strength with adhesive tapes and adhesive masses for the establishment of airtight layers. (g) Supplement 2: 2019-06 Thermal bridges—Examples for planning and performance
23.
Zurück zum Zitat DIN 18195: 2017-07 Waterproofing of buildings. (a) Supplement 2: 2017-07 Information on methods for the determination of thickness of liquid-applied waterproofing materials and evaluation of the results DIN 18195: 2017-07 Waterproofing of buildings. (a) Supplement 2: 2017-07 Information on methods for the determination of thickness of liquid-applied waterproofing materials and evaluation of the results
24.
Zurück zum Zitat DIN 18533: Waterproofing of elements in contact with soil. (a) Part 1: 2017-07 Requirements and principles for design and execution DIN 18533: Waterproofing of elements in contact with soil. (a) Part 1: 2017-07 Requirements and principles for design and execution
25.
Zurück zum Zitat DIN 18534: Waterproofing for indoor applications. (a) Part 1: 2017-07 Waterproofing for indoor Requirements and principles for design and execution DIN 18534: Waterproofing for indoor applications. (a) Part 1: 2017-07 Waterproofing for indoor Requirements and principles for design and execution
Metadaten
Titel
Hygrothermal Functions
verfasst von
José Luis Moro
Copyright-Jahr
2024
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-61742-7_27