Skip to main content
Erschienen in: Neural Processing Letters 1/2021

01.01.2021

Identification of Nonlinear Dynamical System Based on Raised-Cosine Radial Basis Function Neural Networks

verfasst von: Guo Luo, Zhi Yang, Choujun Zhan, Qizhi Zhang

Erschienen in: Neural Processing Letters | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present and investigate a new type of radial basis function (RBF) neural networks mechanism using raised-cosine (RC) function to identify nonlinear dynamic system. In this design, the RBF neural networks mechanism utilizes RC function to replace Gaussian function, which is called RCRBF. An N-dimensional RC function has the constant interpolation property, which is benefit for the function approximating errors analysis in the neural networks. Based on multivariable RC function approximation theory, we develop how to select the updated parameters and the distance of adjacent nodes in lattice points. Therefore, the proposed networks can uniformly approximate nonlinear dynamical function. As persistency excitation (PE) plays an important part in neural networks learning system, how does PE condition behave in input sequences is formulated by RC function analysis. The weights updating and errors convergence are concluded by Lyapunov function analysis. To illustrate the effectiveness of the proposed RCRBF method, Van Der Pol and Rossler dynamical system are used as test examples, in comparison with GRBF mechanism. The results show that the proposed method has better accurate identification and approximating effect than that of GRBF mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu X, Lian C, Zuo L et al (2014) Kernel-based approximate dynamic programming for real-time online learning control: an experimental study. IEEE Trans Control Syst Technol 22:146–156CrossRef Xu X, Lian C, Zuo L et al (2014) Kernel-based approximate dynamic programming for real-time online learning control: an experimental study. IEEE Trans Control Syst Technol 22:146–156CrossRef
2.
Zurück zum Zitat Min W, Cong W (2015) Neural learning control of pure-feedback nonlinear systems. Nonlinear Dyn 79:2589–2608MathSciNetCrossRef Min W, Cong W (2015) Neural learning control of pure-feedback nonlinear systems. Nonlinear Dyn 79:2589–2608MathSciNetCrossRef
3.
Zurück zum Zitat Zong Q, Wang F, Tian B et al (2014) Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn 78:289–315MathSciNetCrossRef Zong Q, Wang F, Tian B et al (2014) Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn 78:289–315MathSciNetCrossRef
4.
Zurück zum Zitat Zhang Y, Li S, Liu X (2017) Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels. IEEE Trans Control Syst Technol 26:1–15 Zhang Y, Li S, Liu X (2017) Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels. IEEE Trans Control Syst Technol 26:1–15
5.
Zurück zum Zitat Dong J, Zhang G (2017) Identification and robust control of the nonlinear photoelectrothermal dynamics of LED systems. IEEE Trans Ind Electron 64:2215–2225CrossRef Dong J, Zhang G (2017) Identification and robust control of the nonlinear photoelectrothermal dynamics of LED systems. IEEE Trans Ind Electron 64:2215–2225CrossRef
6.
Zurück zum Zitat Arnst M, Ghanem R, Masri R (2010) Maximum entropy approach to the identification of stochastic reduced-order models of nonlinear dynamical systems. Aeronaut J 114:637–650CrossRef Arnst M, Ghanem R, Masri R (2010) Maximum entropy approach to the identification of stochastic reduced-order models of nonlinear dynamical systems. Aeronaut J 114:637–650CrossRef
7.
Zurück zum Zitat Pavlenko V, Pavlenko S, Speranskyy V (2013) Interpolation method of nonlinear dynamical systems identification based on volterra model in frequency domain. In: 2013 IEEE 7th international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS). IEEE Pavlenko V, Pavlenko S, Speranskyy V (2013) Interpolation method of nonlinear dynamical systems identification based on volterra model in frequency domain. In: 2013 IEEE 7th international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS). IEEE
8.
Zurück zum Zitat Greblicki M, Pawlak M (2019) The weighted nearest neighbor estimate for Hammerstein system identification. IEEE Trans Autom Control 64:1550–1565MathSciNetCrossRef Greblicki M, Pawlak M (2019) The weighted nearest neighbor estimate for Hammerstein system identification. IEEE Trans Autom Control 64:1550–1565MathSciNetCrossRef
9.
Zurück zum Zitat Chen Y, Bo Y, Dong J (2006) Time-series prediction using a local linear wavelet neural network. Neurocomputing 69:449–465CrossRef Chen Y, Bo Y, Dong J (2006) Time-series prediction using a local linear wavelet neural network. Neurocomputing 69:449–465CrossRef
10.
Zurück zum Zitat Pindoriya NM, Singh SN, Singh SK (2008) An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Trans Power Syst 23:1423–1432CrossRef Pindoriya NM, Singh SN, Singh SK (2008) An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Trans Power Syst 23:1423–1432CrossRef
11.
Zurück zum Zitat Wai RJ, Chang HH (2004) Backstepping wavelet neural network control for indirect field-oriented induction motor drive. IEEE Trans Neural Netw 15:367–382CrossRef Wai RJ, Chang HH (2004) Backstepping wavelet neural network control for indirect field-oriented induction motor drive. IEEE Trans Neural Netw 15:367–382CrossRef
12.
Zurück zum Zitat Park J, Sandberg IW (2014) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257CrossRef Park J, Sandberg IW (2014) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257CrossRef
13.
Zurück zum Zitat Alexandridis A, Chondrodima E, Giannopoulos N et al (2017) A fast and efficient method for training categorical radial basis function networks. IEEE Trans Neural Netw Learn Syst 28:1–6CrossRef Alexandridis A, Chondrodima E, Giannopoulos N et al (2017) A fast and efficient method for training categorical radial basis function networks. IEEE Trans Neural Netw Learn Syst 28:1–6CrossRef
14.
Zurück zum Zitat Zhang XY, Xie GS, Liu CL et al (2017) End-to-end online writer identification with recurrent neural network. IEEE Trans Hum–Mach Syst 47(2):285–292CrossRef Zhang XY, Xie GS, Liu CL et al (2017) End-to-end online writer identification with recurrent neural network. IEEE Trans Hum–Mach Syst 47(2):285–292CrossRef
15.
Zurück zum Zitat Mou L, Bruzzone L, Xiao XZ (2018) Learning spectral–spatial–temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans Geosci Remote Sens 57:1–12 Mou L, Bruzzone L, Xiao XZ (2018) Learning spectral–spatial–temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans Geosci Remote Sens 57:1–12
16.
Zurück zum Zitat Tang J, Fang L, Zou Y et al (2017) An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Trans Intell Transp Syst 18:1–11CrossRef Tang J, Fang L, Zou Y et al (2017) An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Trans Intell Transp Syst 18:1–11CrossRef
17.
Zurück zum Zitat Mushage BO, Chedjou JC, Kyamakya K (2017) Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dyn 87:2021–2037CrossRef Mushage BO, Chedjou JC, Kyamakya K (2017) Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dyn 87:2021–2037CrossRef
18.
Zurück zum Zitat Zhao H, Gao S, He Z et al (2014) Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture. IEEE Trans Ind Electron 61:4171–4182CrossRef Zhao H, Gao S, He Z et al (2014) Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture. IEEE Trans Ind Electron 61:4171–4182CrossRef
19.
Zurück zum Zitat Cannon M (1995) Space-frequency localized basis function networks for nonlinear system identification and control. Neurocomputing 9:293–342CrossRef Cannon M (1995) Space-frequency localized basis function networks for nonlinear system identification and control. Neurocomputing 9:293–342CrossRef
20.
Zurück zum Zitat Chen Y, Yang B, Dong J (2006) Time-series prediction using a local linear wavelet neural network. Neurocomputing 69:449–465CrossRef Chen Y, Yang B, Dong J (2006) Time-series prediction using a local linear wavelet neural network. Neurocomputing 69:449–465CrossRef
21.
Zurück zum Zitat Zhang J, Walter GG, Miao Y et al (1995) Wavelet neural networks for function learning. IEEE Trans Signal Process 43:1485–1497CrossRef Zhang J, Walter GG, Miao Y et al (1995) Wavelet neural networks for function learning. IEEE Trans Signal Process 43:1485–1497CrossRef
22.
Zurück zum Zitat Carrillo-Santos CA, Seck-Tuoh-Mora JC, Hernandez-Romero N et al (2018) Wavenet identification of dynamical systems by a modified PSO algorithm. Eng Appl Artif Intell 73:1–9CrossRef Carrillo-Santos CA, Seck-Tuoh-Mora JC, Hernandez-Romero N et al (2018) Wavenet identification of dynamical systems by a modified PSO algorithm. Eng Appl Artif Intell 73:1–9CrossRef
23.
Zurück zum Zitat Kumar R, Srivastava S, Gupta JRP et al (2018) Diagonal recurrent neural network based identification of nonlinear dynamical systems with Lyapunov stability based adaptive learning rates. Neurocomputing 287:102–117CrossRef Kumar R, Srivastava S, Gupta JRP et al (2018) Diagonal recurrent neural network based identification of nonlinear dynamical systems with Lyapunov stability based adaptive learning rates. Neurocomputing 287:102–117CrossRef
24.
Zurück zum Zitat Tavoosi J, Badamchizadeh MA (2013) A class of type-2 fuzzy neural networks for nonlinear dynamical system identification. Neural Comput Appl 23:707–717CrossRef Tavoosi J, Badamchizadeh MA (2013) A class of type-2 fuzzy neural networks for nonlinear dynamical system identification. Neural Comput Appl 23:707–717CrossRef
25.
Zurück zum Zitat Sanner RM, Slotine JJE (1992) Stable recursive identification using radial basis function networks. In: American control conference Sanner RM, Slotine JJE (1992) Stable recursive identification using radial basis function networks. In: American control conference
26.
Zurück zum Zitat Gorinevsky D (1995) On the persistency of excitation in radial basis function network identification of nonlinear systems. IEEE Trans Neural Netw 6:1237–1244CrossRef Gorinevsky D (1995) On the persistency of excitation in radial basis function network identification of nonlinear systems. IEEE Trans Neural Netw 6:1237–1244CrossRef
27.
Zurück zum Zitat Kurdila AJ, Narcowich FJ, Ward JD (2006) Persistency of excitation in identification using radial basis function approximants. SIAM J Control Optim 33:625–642MathSciNetCrossRef Kurdila AJ, Narcowich FJ, Ward JD (2006) Persistency of excitation in identification using radial basis function approximants. SIAM J Control Optim 33:625–642MathSciNetCrossRef
28.
Zurück zum Zitat Wang C, Hill DJ (2003) Learning from neural control. IEEE Trans Neural Netw 17:130–146CrossRef Wang C, Hill DJ (2003) Learning from neural control. IEEE Trans Neural Netw 17:130–146CrossRef
29.
Zurück zum Zitat Zheng T, Wang C (2017) Relationship between persistent excitation levels and RBF network structures, with application to performance analysis of deterministic learning. IEEE Trans Cybern 47:3380–3392CrossRef Zheng T, Wang C (2017) Relationship between persistent excitation levels and RBF network structures, with application to performance analysis of deterministic learning. IEEE Trans Cybern 47:3380–3392CrossRef
30.
Zurück zum Zitat Wang C, Hill DJ, Chen G (2009) Deterministic learning of nonlinear dynamical systems. Int J Bifurc Chaos 19:1307–1328MathSciNetCrossRef Wang C, Hill DJ, Chen G (2009) Deterministic learning of nonlinear dynamical systems. Int J Bifurc Chaos 19:1307–1328MathSciNetCrossRef
31.
Zurück zum Zitat Yuan C, Wang C (2011) Persistency of excitation and performance of deterministic learning. Syst Control Lett 60:952–959MathSciNetCrossRef Yuan C, Wang C (2011) Persistency of excitation and performance of deterministic learning. Syst Control Lett 60:952–959MathSciNetCrossRef
32.
Zurück zum Zitat Liu T, Wang C, Hill DJ (2009) Learning from neural control of nonlinear systems in normal form. Syst Control Lett 58:633–638MathSciNetCrossRef Liu T, Wang C, Hill DJ (2009) Learning from neural control of nonlinear systems in normal form. Syst Control Lett 58:633–638MathSciNetCrossRef
33.
Zurück zum Zitat Zeng W, Ismail SA, Lim YP et al (2019) Classification of gait patterns using kinematic and kinetic features, gait dynamics and neural networks in patients with unilateral anterior cruciate ligament deficiency. Neural Process Lett 50:887–909CrossRef Zeng W, Ismail SA, Lim YP et al (2019) Classification of gait patterns using kinematic and kinetic features, gait dynamics and neural networks in patients with unilateral anterior cruciate ligament deficiency. Neural Process Lett 50:887–909CrossRef
34.
Zurück zum Zitat Wei Z, Cong W, Yang F (2014) Silhouette-based gait recognition via deterministic learning. Pattern Recognit 47:3568–3584CrossRef Wei Z, Cong W, Yang F (2014) Silhouette-based gait recognition via deterministic learning. Pattern Recognit 47:3568–3584CrossRef
35.
Zurück zum Zitat Schilling RJ, Carroll JJJ, Alajlouni AF (2001) Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans Neural Netw 12:1–15CrossRef Schilling RJ, Carroll JJJ, Alajlouni AF (2001) Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans Neural Netw 12:1–15CrossRef
36.
Zurück zum Zitat Pan Y, Yu H, Meng JE (2014) Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans Neural Netw Learn Syst 25:2264–2274CrossRef Pan Y, Yu H, Meng JE (2014) Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans Neural Netw Learn Syst 25:2264–2274CrossRef
37.
Zurück zum Zitat Al-Ajlouni AF, Schilling RJ, Harris SL (2004) Identification of nonlinear discrete-time systems using raised-cosine radial basis function networks. Int J Syst Sci 35:211–221MathSciNetCrossRef Al-Ajlouni AF, Schilling RJ, Harris SL (2004) Identification of nonlinear discrete-time systems using raised-cosine radial basis function networks. Int J Syst Sci 35:211–221MathSciNetCrossRef
38.
Zurück zum Zitat Sanner RM, Slotine JE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Netw 3:837–863 CrossRef Sanner RM, Slotine JE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Netw 3:837–863 CrossRef
39.
Zurück zum Zitat Jinkun LIU (2013) RBF neural network control for mechanical systems design, analysis and Matlab simulation. Tsinghua & Springer Press, New YorkMATH Jinkun LIU (2013) RBF neural network control for mechanical systems design, analysis and Matlab simulation. Tsinghua & Springer Press, New YorkMATH
40.
Zurück zum Zitat Wirkus S, Rand R (2015) The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn 30:205–221MathSciNetCrossRef Wirkus S, Rand R (2015) The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn 30:205–221MathSciNetCrossRef
41.
Zurück zum Zitat Park JH (2005) Adaptive synchronization of Rossler system with uncertain parameters. Chaos Solitons Fract 25:333–338MathSciNetCrossRef Park JH (2005) Adaptive synchronization of Rossler system with uncertain parameters. Chaos Solitons Fract 25:333–338MathSciNetCrossRef
Metadaten
Titel
Identification of Nonlinear Dynamical System Based on Raised-Cosine Radial Basis Function Neural Networks
verfasst von
Guo Luo
Zhi Yang
Choujun Zhan
Qizhi Zhang
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10410-9

Weitere Artikel der Ausgabe 1/2021

Neural Processing Letters 1/2021 Zur Ausgabe

Neuer Inhalt