Skip to main content
Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics 1/2022

01.12.2022 | Original Article

Identifying the candidate genes using co-expression, GO, and machine learning techniques for Alzheimer’s disease

verfasst von: Shailendra Sahu, Pankaj Singh Dholaniya, T. Sobha Rani

Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alzheimer’s disease is a neurological disorder that affects an individual’s memory, motor functions, behaviour, and thought process. It has been observed that the hippocampus is the first region that gets affected by Alzheimer’s. Hence, a study of the hippocampus region can identify genes responsible for the occurrence of the early stage of the disease. Most often, t-test and correlation are used to identify significant genes at the initial level. As the genes are differentially expressed, their classification power is generally high. These genes might appear significant, but their degree of specificity towards the disease might be low, leading to misleading interpretations. Similarly, there may be many false correlations between the genes that can affect the identification of relevant genes. This paper introduces a new framework to reduce the false correlations and find the potential biomarkers for the disease. The framework concerned uses the t-test, correlation, Gene Ontology (GO) categories, and machine learning techniques to find potential genes. The proposed framework detects Alzheimer-related genes and achieves more than 95% classification accuracy in every dataset considered. Some of the identified genes which are directly involved in Alzheimer are APP, GRIN2B, and APLP2. The proposed framework also identifies genes like ZNF621, RTF1, DCH1, and ERBB4, which may play an important role in Alzheimer’s. Gene set enrichment analysis (GSEA) is also carried out to determine the major GO categories: down-regulated and up-regulated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18(3):91–93CrossRef Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18(3):91–93CrossRef
Zurück zum Zitat AL-Dlaeen D, Alashqur A(2014) Using decision tree classification to assist in the prediction of Alzheimer’s disease. 6th International conference on computer science and information technology (CSIT), Amman, pp. 122-126 AL-Dlaeen D, Alashqur A(2014) Using decision tree classification to assist in the prediction of Alzheimer’s disease. 6th International conference on computer science and information technology (CSIT), Amman, pp. 122-126
Zurück zum Zitat Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15(4):239–46CrossRef Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15(4):239–46CrossRef
Zurück zum Zitat Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–9CrossRef Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–9CrossRef
Zurück zum Zitat Blennow K, Bogdanovic N et al (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 103(5):603–618CrossRef Blennow K, Bogdanovic N et al (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 103(5):603–618CrossRef
Zurück zum Zitat Chaudhury AR, Gerecke KM et al (2003) Neuregulin-1 and ErbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease. J Neuropathol Exp Neurol 62(1):42–54CrossRef Chaudhury AR, Gerecke KM et al (2003) Neuregulin-1 and ErbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease. J Neuropathol Exp Neurol 62(1):42–54CrossRef
Zurück zum Zitat Chen Y-H, Lo RY (2017) Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue za Zhi (Tzu-chi Med J) 29(3):138–142 Chen Y-H, Lo RY (2017) Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue za Zhi (Tzu-chi Med J) 29(3):138–142
Zurück zum Zitat Cheng J, Liu HP et al (2021) Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci Rep 11:13704CrossRef Cheng J, Liu HP et al (2021) Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci Rep 11:13704CrossRef
Zurück zum Zitat Crow M, Lim N et al (2019) Predictability of human differential gene expression. Proc Natl Acad Sci 116(13):6491–6500CrossRef Crow M, Lim N et al (2019) Predictability of human differential gene expression. Proc Natl Acad Sci 116(13):6491–6500CrossRef
Zurück zum Zitat Duff MC, Covington NV et al (2020) Semantic memory and the hippocampus: revisiting, reaffirming, and extending the reach of their critical relationship. Front Hum Neurosci 13:471CrossRef Duff MC, Covington NV et al (2020) Semantic memory and the hippocampus: revisiting, reaffirming, and extending the reach of their critical relationship. Front Hum Neurosci 13:471CrossRef
Zurück zum Zitat Hall M (2000) Correlation-based feature selection for machine learning. Dep Comput Sci 19 Hall M (2000) Correlation-based feature selection for machine learning. Dep Comput Sci 19
Zurück zum Zitat Hu R-T, Yu Q et al (2020) Co-expression network analysis reveals novel genes underlying Alzheimer’s disease pathogenesis. Front Aging Neurosci 12:432MathSciNetCrossRef Hu R-T, Yu Q et al (2020) Co-expression network analysis reveals novel genes underlying Alzheimer’s disease pathogenesis. Front Aging Neurosci 12:432MathSciNetCrossRef
Zurück zum Zitat Huang DW et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183CrossRef Huang DW et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183CrossRef
Zurück zum Zitat Keaney J et al (2019) Inhibition of Bruton’s tyrosine kinase modulates microglial phagocytosis: therapeutic implications for Alzheimer’s disease. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 14(3):448–461CrossRef Keaney J et al (2019) Inhibition of Bruton’s tyrosine kinase modulates microglial phagocytosis: therapeutic implications for Alzheimer’s disease. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 14(3):448–461CrossRef
Zurück zum Zitat Kelly BL, Ferreira A (2007) $A\beta $ disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience 147(1):60–70CrossRef Kelly BL, Ferreira A (2007) $A\beta $ disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience 147(1):60–70CrossRef
Zurück zum Zitat Kiecolt-Glaser JK, Marucha PT et al (1995) Slowing of wound healing by psychological stress. Lancet 346(8984):1194–1196CrossRef Kiecolt-Glaser JK, Marucha PT et al (1995) Slowing of wound healing by psychological stress. Lancet 346(8984):1194–1196CrossRef
Zurück zum Zitat Kuang J, Zhang P, Cai T et al (2021) Prediction of transition from mild cognitive impairment to Alzheimer’s disease based on a logistic regression-artificial neural network-decision tree model. Geriatr Gerontol Int 21(1):43–47CrossRef Kuang J, Zhang P, Cai T et al (2021) Prediction of transition from mild cognitive impairment to Alzheimer’s disease based on a logistic regression-artificial neural network-decision tree model. Geriatr Gerontol Int 21(1):43–47CrossRef
Zurück zum Zitat Lanoiselée H-M et al (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14(3):e1002270CrossRef Lanoiselée H-M et al (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14(3):e1002270CrossRef
Zurück zum Zitat Magistri M et al (2015) Transcriptomics profiling of Alzheimer’s disease reveal neurovascular defects, altered amyloid-$\beta $ homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimer’s Dis JAD 48(3):647–665CrossRef Magistri M et al (2015) Transcriptomics profiling of Alzheimer’s disease reveal neurovascular defects, altered amyloid-$\beta $ homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimer’s Dis JAD 48(3):647–665CrossRef
Zurück zum Zitat Martin D, Brun C, Remy E et al (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5:R101CrossRef Martin D, Brun C, Remy E et al (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5:R101CrossRef
Zurück zum Zitat Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J J Med Assoc Malawi 24(3):69–71 Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J J Med Assoc Malawi 24(3):69–71
Zurück zum Zitat Nishiwaki K, Kanamori K, Ohwada H (2016) Finding a disease-related gene from microarray data using random forest. IEEE 15th international conference on cognitive informatics and cognitive computing (ICCICC), Palo Alto, pp. 542-546 Nishiwaki K, Kanamori K, Ohwada H (2016) Finding a disease-related gene from microarray data using random forest. IEEE 15th international conference on cognitive informatics and cognitive computing (ICCICC), Palo Alto, pp. 542-546
Zurück zum Zitat Norstrom EM et al (2010) Identification of NEEP21 as a $\beta $-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci Off J Soc Neurosci 30(46):15677–15685CrossRef Norstrom EM et al (2010) Identification of NEEP21 as a $\beta $-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci Off J Soc Neurosci 30(46):15677–15685CrossRef
Zurück zum Zitat Pinner E et al (2017) CD44 splice variants as potential players in Alzheimer’s disease pathology. J Alzheimer’s Dis JAD 58(4):1137–1149CrossRef Pinner E et al (2017) CD44 splice variants as potential players in Alzheimer’s disease pathology. J Alzheimer’s Dis JAD 58(4):1137–1149CrossRef
Zurück zum Zitat Ramaswamy R et al (2021) Feature selection for Alzheimer’s gene expression data using modified binary particle swarm optimization. IETE J Res 2021:1–12CrossRef Ramaswamy R et al (2021) Feature selection for Alzheimer’s gene expression data using modified binary particle swarm optimization. IETE J Res 2021:1–12CrossRef
Zurück zum Zitat Ray M, Zhang W (2010) Analysis of Alzheimer’s disease severity across brain regions by topological analysis of gene co-expression networks. BMC Syst Biol 4:136CrossRef Ray M, Zhang W (2010) Analysis of Alzheimer’s disease severity across brain regions by topological analysis of gene co-expression networks. BMC Syst Biol 4:136CrossRef
Zurück zum Zitat Ray M, Yunis R, Chen X, Rocke DM (2012) Comparison of low and high dose ionizing radiation using topological analysis of gene co-expression networks. BMC Genomics 13(1):190CrossRef Ray M, Yunis R, Chen X, Rocke DM (2012) Comparison of low and high dose ionizing radiation using topological analysis of gene co-expression networks. BMC Genomics 13(1):190CrossRef
Zurück zum Zitat Ray S et al (2017) A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer’s disease progression. BMC Bioinform 18(1):579CrossRef Ray S et al (2017) A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer’s disease progression. BMC Bioinform 18(1):579CrossRef
Zurück zum Zitat Ruan J, Zhang W (2006) Identification and evaluation of functional modules in gene co-expression networks. Syst Biol Comput Proteomics Lecture Notes Comput Sci 4532(1):57–76 Ruan J, Zhang W (2006) Identification and evaluation of functional modules in gene co-expression networks. Syst Biol Comput Proteomics Lecture Notes Comput Sci 4532(1):57–76
Zurück zum Zitat Saputra RA et al (2020) Detecting Alzheimer’s disease by the decision tree methods based on particle swarm optimization. J Phys Conf Ser 1641:012025CrossRef Saputra RA et al (2020) Detecting Alzheimer’s disease by the decision tree methods based on particle swarm optimization. J Phys Conf Ser 1641:012025CrossRef
Zurück zum Zitat Seifert B, Eckenstaler R et al (2016) Amyloid-beta induced changes in vesicular transport of BDNF in hippocampal neurons. Neural Plast 2016:4145708CrossRef Seifert B, Eckenstaler R et al (2016) Amyloid-beta induced changes in vesicular transport of BDNF in hippocampal neurons. Neural Plast 2016:4145708CrossRef
Zurück zum Zitat Sharma A, Dey P (2021) A machine learning approach to unmask novel gene signatures and prediction of Alzheimer’s disease within different brain regions. Genomics 113(4):1778–1789CrossRef Sharma A, Dey P (2021) A machine learning approach to unmask novel gene signatures and prediction of Alzheimer’s disease within different brain regions. Genomics 113(4):1778–1789CrossRef
Zurück zum Zitat Subramanian A, Tamayo P et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550CrossRef Subramanian A, Tamayo P et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550CrossRef
Zurück zum Zitat Swamy K et al (2021) Protein complexes form a basis for complex hybrid incompatibility. Front Genet 12:144CrossRef Swamy K et al (2021) Protein complexes form a basis for complex hybrid incompatibility. Front Genet 12:144CrossRef
Zurück zum Zitat Takahiro K, Kazutaka N, Hayato O (2016) Finding unknown disease-related genes by comparing random forest results to secondary data in medical science study. Proceedings of the 7th international conference on computational systems-biology and bioinformatics (CSBio ’16), pp. 24-27 Takahiro K, Kazutaka N, Hayato O (2016) Finding unknown disease-related genes by comparing random forest results to secondary data in medical science study. Proceedings of the 7th international conference on computational systems-biology and bioinformatics (CSBio ’16), pp. 24-27
Zurück zum Zitat Watt NT et al (2010) The role of Zinc in Alzheimer’s disease. Int J Alzheimer’s Dis 2011:971021 Watt NT et al (2010) The role of Zinc in Alzheimer’s disease. Int J Alzheimer’s Dis 2011:971021
Zurück zum Zitat Woo R-S et al (2011) Expression of ErbB4 in the neurons of Alzheimer’s disease brain and APP/PS1 mice, a model of Alzheimer’s disease. Anat Cell Biol 44(2):116–27CrossRef Woo R-S et al (2011) Expression of ErbB4 in the neurons of Alzheimer’s disease brain and APP/PS1 mice, a model of Alzheimer’s disease. Anat Cell Biol 44(2):116–27CrossRef
Zurück zum Zitat Wu Y, Zhang S et al (2016) Regulation of global gene expression and cell proliferation by APP. Sci Rep 6:22460CrossRef Wu Y, Zhang S et al (2016) Regulation of global gene expression and cell proliferation by APP. Sci Rep 6:22460CrossRef
Zurück zum Zitat Zhao C, Wang Z (2018) GOGO: an improved algorithm to measure the semantic similarity between gene ontology terms. Sci Rep 8:15107CrossRef Zhao C, Wang Z (2018) GOGO: an improved algorithm to measure the semantic similarity between gene ontology terms. Sci Rep 8:15107CrossRef
Zurück zum Zitat Zhou S (2008) Probability theory and mathematical statistics, 4th edn. Higher Education Press, Beijing Zhou S (2008) Probability theory and mathematical statistics, 4th edn. Higher Education Press, Beijing
Zurück zum Zitat Zhu G, Yang P (2016) Identifying the candidate genes for Alzheimer’s disease based on the rejection region of T-test. International conference on machine learning and cybernetics (ICMLC), Jeju, vol. 2, pp. 732–736 Zhu G, Yang P (2016) Identifying the candidate genes for Alzheimer’s disease based on the rejection region of T-test. International conference on machine learning and cybernetics (ICMLC), Jeju, vol. 2, pp. 732–736
Metadaten
Titel
Identifying the candidate genes using co-expression, GO, and machine learning techniques for Alzheimer’s disease
verfasst von
Shailendra Sahu
Pankaj Singh Dholaniya
T. Sobha Rani
Publikationsdatum
01.12.2022
Verlag
Springer Vienna
Erschienen in
Network Modeling Analysis in Health Informatics and Bioinformatics / Ausgabe 1/2022
Print ISSN: 2192-6662
Elektronische ISSN: 2192-6670
DOI
https://doi.org/10.1007/s13721-021-00349-9

Weitere Artikel der Ausgabe 1/2022

Network Modeling Analysis in Health Informatics and Bioinformatics 1/2022 Zur Ausgabe

Premium Partner