Skip to main content
Erschienen in: Quantum Information Processing 4/2017

01.04.2017

Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

verfasst von: Kathleen E. Hamilton, Travis S. Humble

Erschienen in: Quantum Information Processing | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph \({\mathcal {G}}\): a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into \({\mathcal {G}}\) will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph \(K_{N,N}\) has a MSC of N minors, from which \(K_{N+1}\) is identified as the largest clique minor of \(K_{N,N}\). The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Work presented at the Society for Industrial and Applied Mathematics Workshop on Network Science 2016, manuscript in progress.
 
2
See footnote 1
 
Literatur
1.
Zurück zum Zitat Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSMathSciNetCrossRefMATH Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSMathSciNetCrossRefMATH
2.
Zurück zum Zitat Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A.J., Ruggiero, B., Silvestrinia, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems, pp. 229–236. Springer, New York (2004) Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A.J., Ruggiero, B., Silvestrinia, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems, pp. 229–236. Springer, New York (2004)
3.
Zurück zum Zitat Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)ADSCrossRef Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)ADSCrossRef
4.
Zurück zum Zitat Humble, T.S., McCaskey, A.J., Bennink, R.S., Billings, J.J., D’Azevedo, E.F., Sullivan, B.D., Klymko, C.F., Seddiqi, H.: An integrated programming and development environment for adiabatic quantum optimization. Comput. Sci. Discov. 7(1), 015006 (2014)CrossRef Humble, T.S., McCaskey, A.J., Bennink, R.S., Billings, J.J., D’Azevedo, E.F., Sullivan, B.D., Klymko, C.F., Seddiqi, H.: An integrated programming and development environment for adiabatic quantum optimization. Comput. Sci. Discov. 7(1), 015006 (2014)CrossRef
5.
Zurück zum Zitat Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRef Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRef
6.
Zurück zum Zitat Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)MathSciNetCrossRefMATH Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefMATH Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefMATH Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor problems: when does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–495 (2014)MathSciNetCrossRefMATH Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor problems: when does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–495 (2014)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)MathSciNetCrossRefMATH Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Zaribafiyan, A., Marchand, D.J.J., Rezaei, S.S.C.: Systematic and deterministic graph-minor embedding for cartesian products of graphs. arXiv preprint arXiv:1602.04274 (2016) Zaribafiyan, A., Marchand, D.J.J., Rezaei, S.S.C.: Systematic and deterministic graph-minor embedding for cartesian products of graphs. arXiv preprint arXiv:​1602.​04274 (2016)
13.
14.
Zurück zum Zitat Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)ADSMathSciNetCrossRefMATH Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)ADSMathSciNetCrossRefMATH
15.
Zurück zum Zitat Humble, T.S., McCaskey, A., Schrock, J., Britt, K., Seddiqi, H., Imam, N.: Performance models for split-execution computing systems. In: 18th Workshop on Advances in Parallel and Distributed Computational Models (2016) Humble, T.S., McCaskey, A., Schrock, J., Britt, K., Seddiqi, H., Imam, N.: Performance models for split-execution computing systems. In: 18th Workshop on Advances in Parallel and Distributed Computational Models (2016)
16.
Zurück zum Zitat Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv preprint arXiv:1506.08479 (2015) Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv preprint arXiv:​1506.​08479 (2015)
17.
Zurück zum Zitat Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)ADSCrossRefMATH Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)ADSCrossRefMATH
18.
Zurück zum Zitat Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R., Smelyanskiy, V.N.: A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224(1), 131–148 (2015)CrossRef Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R., Smelyanskiy, V.N.: A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224(1), 131–148 (2015)CrossRef
19.
20.
Zurück zum Zitat Seddiqi, H., Humble, T.S.: Adiabatic quantum optimization for associative memory recall. Front. Phys. 2, 79 (2014)CrossRef Seddiqi, H., Humble, T.S.: Adiabatic quantum optimization for associative memory recall. Front. Phys. 2, 79 (2014)CrossRef
22.
Zurück zum Zitat Cygan, M., Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I., Pachocki, J., Socała, A.: Tight lower bounds on graph embedding problems. arXiv preprint arXiv:1602.05016 (2016) Cygan, M., Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I., Pachocki, J., Socała, A.: Tight lower bounds on graph embedding problems. arXiv preprint arXiv:​1602.​05016 (2016)
23.
Zurück zum Zitat Cera, M., Diánez, A., García-Vázquez, P., Valenzuela, J.C.: Graphs without minor complete subgraphs. Discrete Math. 307(11), 1276–1284 (2007)MathSciNetCrossRefMATH Cera, M., Diánez, A., García-Vázquez, P., Valenzuela, J.C.: Graphs without minor complete subgraphs. Discrete Math. 307(11), 1276–1284 (2007)MathSciNetCrossRefMATH
26.
27.
Zurück zum Zitat Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory Ser. B 48(2), 255–288 (1990)MathSciNetCrossRefMATH Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory Ser. B 48(2), 255–288 (1990)MathSciNetCrossRefMATH
28.
29.
Zurück zum Zitat Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(1), 325–357 (2004). (Special Issue Dedicated to Professor W.T. Tutte)MathSciNetMATH Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(1), 325–357 (2004). (Special Issue Dedicated to Professor W.T. Tutte)MathSciNetMATH
30.
31.
Zurück zum Zitat Song, Z.-X., Thomas, R.: The extremal function for K9 minors. J. Comb. Theory Ser. B 96(2), 240–252 (2006)CrossRefMATH Song, Z.-X., Thomas, R.: The extremal function for K9 minors. J. Comb. Theory Ser. B 96(2), 240–252 (2006)CrossRefMATH
32.
Zurück zum Zitat Fountoulakis, N., Kühn, D., Osthus, D.: The order of the largest complete minor in a random graph. Random Struct. Algorithms 33(2), 127–141 (2008)MathSciNetCrossRefMATH Fountoulakis, N., Kühn, D., Osthus, D.: The order of the largest complete minor in a random graph. Random Struct. Algorithms 33(2), 127–141 (2008)MathSciNetCrossRefMATH
33.
34.
Zurück zum Zitat Joret, G., Wood, D.R.: Complete graph minors and the graph minor structure theorem. J. Comb. Theory Ser. B 103(1), 61–74 (2013)MathSciNetCrossRefMATH Joret, G., Wood, D.R.: Complete graph minors and the graph minor structure theorem. J. Comb. Theory Ser. B 103(1), 61–74 (2013)MathSciNetCrossRefMATH
36.
40.
Zurück zum Zitat Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: Linear connectivity forces large complete bipartite minors. J. Comb. Theory Ser. B 99(3), 557–582 (2009)MathSciNetCrossRefMATH Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: Linear connectivity forces large complete bipartite minors. J. Comb. Theory Ser. B 99(3), 557–582 (2009)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Dickson, N.G., Johnson, M.W., Amin, M.H., Harris, R., Altomare, F., Berkley, A.J., Bunyk, P., Cai, J., Chapple, E.M., Chavez, P., Cioata, F., Cirip, T., deBuen, P., Drew-Brook, M., Enderud, C., Gildert, S., Hamze, F., Hilton, J.P., Hoskinson, E., Karimi, K., Ladizinsky, E., Ladizinsky, N., Lanting, T., Mahon, T., Neufeld, R., Oh, T., Perminov, I., Petroff, C., Przybysz, A., Rich, C., Spear, P., Tcaciuc, A., Thom, M.C., Tolkacheva, E., Uchaikin, S., Wang, J., Wilson, A.B., Merali, Z., Rose, G.: Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013)ADSCrossRef Dickson, N.G., Johnson, M.W., Amin, M.H., Harris, R., Altomare, F., Berkley, A.J., Bunyk, P., Cai, J., Chapple, E.M., Chavez, P., Cioata, F., Cirip, T., deBuen, P., Drew-Brook, M., Enderud, C., Gildert, S., Hamze, F., Hilton, J.P., Hoskinson, E., Karimi, K., Ladizinsky, E., Ladizinsky, N., Lanting, T., Mahon, T., Neufeld, R., Oh, T., Perminov, I., Petroff, C., Przybysz, A., Rich, C., Spear, P., Tcaciuc, A., Thom, M.C., Tolkacheva, E., Uchaikin, S., Wang, J., Wilson, A.B., Merali, Z., Rose, G.: Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013)ADSCrossRef
43.
Zurück zum Zitat Katzgraber, H.G., Hamze, F., Andrist, R.S.: Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014) Katzgraber, H.G., Hamze, F., Andrist, R.S.: Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014)
44.
45.
Zurück zum Zitat Fomin, F.V., Thilikos, D.M.: Dominating sets and local treewidth. In: Di Battista, G., Zwick, U. (eds.) Proceedings of Algorithms—ESA 2003: 11th Annual European Symposium, Budapest, Hungary, 16–19 September 2003, pp. 221–229. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) Fomin, F.V., Thilikos, D.M.: Dominating sets and local treewidth. In: Di Battista, G., Zwick, U. (eds.) Proceedings of Algorithms—ESA 2003: 11th Annual European Symposium, Budapest, Hungary, 16–19 September 2003, pp. 221–229. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)
Metadaten
Titel
Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
verfasst von
Kathleen E. Hamilton
Travis S. Humble
Publikationsdatum
01.04.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1513-7

Weitere Artikel der Ausgabe 4/2017

Quantum Information Processing 4/2017 Zur Ausgabe

Neuer Inhalt