Skip to main content

2016 | OriginalPaper | Buchkapitel

9. Image Representation

verfasst von : René Vidal, Yi Ma, S. Shankar Sastry

Erschienen in: Generalized Principal Component Analysis

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this and the following chapters, we demonstrate why multiple subspaces can be a very useful class of models for image processing and how the subspace clustering techniques may facilitate many important image processing tasks, such as image representation, compression, image segmentation, and video segmentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Which involves further quantization and entropy coding of the so-obtained sparse signals α.
 
2
A topic we will study in more detail from the compression perspective in the next section.
 
3
Here, “optimality” means that the transformation achieves the optimal asymptotic for approximating the class of functions considered (DeVore 1998).
 
4
Here, in contrast to the case of pre-fixed transformations, “optimality” means the representation obtained is the optimal one within the class of models considered, in the sense that it minimizes certain discrepancies between the model and the data.
 
5
In fact, in the VQ model, the coefficients are assumed to be binary.
 
6
Be aware that compared to methods in the first category, representations in this category typically need additional memory to store the information about the resulting model itself, e.g., the basis of the subspace in PCA, the cluster means in VQ.
 
7
Therefore, b needs to be a common divisor of W and H.
 
8
Here by default, the peak value of the imagery data is normalized to 1.
 
9
Notice that to represent a d-dimensional subspace in a D-dimensional space, we need only specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows of a \(d \times D\) matrix. Any nonsingular linear transformation of these vectors span the same subspace. Thus, without loss of generality, we may assume that the matrix is of the normal form \([I_{d\times d},G]\), where G is a \(d \times (D - d)\) matrix consisting of the so-called Grassmannian coordinates.
 
10
Notice that if one uses a preselected basis, such as discrete Fourier transform, discrete cosine transform (JPEG), or wavelets (JPEG-2000), there is no such overhead.
 
11
We also need a very small number of binary bits to store the membership of the vectors. But those extra bits are insignificant compared to \(\Omega \) and often can be ignored.
 
12
In fact, the minimal \(\Omega \) can also be associated with the Kolmogorov entropy or with the minimum description length (MDL) of the imagery data.
 
13
For instance, if we take all the \(b \times b\) blocks and scramble them arbitrarily, the scrambled image would be fit equally well by the same hybrid linear model for the original image.
 
14
This is not to be confused with the subscript i used to indicate different segments \(\mathcal{I}_{i}\) of an image.
 
Literatur
Zurück zum Zitat Bruckstein, A., Donoho, D., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.MathSciNetCrossRefMATH Bruckstein, A., Donoho, D., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.MathSciNetCrossRefMATH
Zurück zum Zitat Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.CrossRef Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.CrossRef
Zurück zum Zitat Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics. Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics.
Zurück zum Zitat Candès, E., & Donoho, D. (2002). New tight frames of curvelets and optimal representations of objects with smooth singularities. Technical Report. Stanford University.MATH Candès, E., & Donoho, D. (2002). New tight frames of curvelets and optimal representations of objects with smooth singularities. Technical Report. Stanford University.MATH
Zurück zum Zitat Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.CrossRef Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.CrossRef
Zurück zum Zitat Chen, J.-Q., Pappas, T. N., Mojsilovic, A., & Rogowitz, B. E. (2003). Image segmentation by spatially adaptive color and texture features. In IEEE International Conference on Image Processing. Chen, J.-Q., Pappas, T. N., Mojsilovic, A., & Rogowitz, B. E. (2003). Image segmentation by spatially adaptive color and texture features. In IEEE International Conference on Image Processing.
Zurück zum Zitat Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 20(1), 33–61.MathSciNetCrossRefMATH Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 20(1), 33–61.MathSciNetCrossRefMATH
Zurück zum Zitat Coifman, R., & Wickerhauser, M. (1992). Entropy-based algorithms for best bases selection. IEEE Transactions on Information Theory, 38(2), 713–718.CrossRefMATH Coifman, R., & Wickerhauser, M. (1992). Entropy-based algorithms for best bases selection. IEEE Transactions on Information Theory, 38(2), 713–718.CrossRefMATH
Zurück zum Zitat Delsarte, P., Macq, B., & Slock, D. (1992). Signal-adapted multiresolution transform for image coding. IEEE Transactions on Information Theory, 38, 897–903.CrossRef Delsarte, P., Macq, B., & Slock, D. (1992). Signal-adapted multiresolution transform for image coding. IEEE Transactions on Information Theory, 38, 897–903.CrossRef
Zurück zum Zitat DeVore, R., Jawerth, B., & Lucier, B. (1992). Image compression through wavelet transform coding. IEEE Transactions on Information Theory, 38(2), 719–746.MathSciNetCrossRefMATH DeVore, R., Jawerth, B., & Lucier, B. (1992). Image compression through wavelet transform coding. IEEE Transactions on Information Theory, 38(2), 719–746.MathSciNetCrossRefMATH
Zurück zum Zitat Do, M. N., & Vetterli, M. (2002). Contourlets: A directional multiresolution image representation. In IEEE International Conference on Image Processing. Do, M. N., & Vetterli, M. (2002). Contourlets: A directional multiresolution image representation. In IEEE International Conference on Image Processing.
Zurück zum Zitat Donoho, D. (1995). Cart and best-ortho-basis: A connection. Manuscript.MATH Donoho, D. (1995). Cart and best-ortho-basis: A connection. Manuscript.MATH
Zurück zum Zitat Donoho, D. (1998). Sparse components analysis and optimal atomic decomposition. Technical Report, Department of Statistics, Stanford University. Donoho, D. (1998). Sparse components analysis and optimal atomic decomposition. Technical Report, Department of Statistics, Stanford University.
Zurück zum Zitat Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization. Proceedings of National Academy of Sciences, 100(5), 2197–2202.MathSciNetCrossRefMATH Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proceedings of National Academy of Sciences, 100(5), 2197–2202.MathSciNetCrossRefMATH
Zurück zum Zitat Donoho, D. L., Vetterli, M., DeVore, R., & Daubechies, I. (1998). Data compression and harmonic analysis. IEEE Transactions on Information Theory, 44(6), 2435–2476.MathSciNetCrossRefMATH Donoho, D. L., Vetterli, M., DeVore, R., & Daubechies, I. (1998). Data compression and harmonic analysis. IEEE Transactions on Information Theory, 44(6), 2435–2476.MathSciNetCrossRefMATH
Zurück zum Zitat Effros, M., & Chou, P. (1995). Weighted universal transform coding: Universal image compression with the Karhunen-Loéve transform. In IEEE International Conference on Image Processing (Vol. 2, pp. 61–64). Effros, M., & Chou, P. (1995). Weighted universal transform coding: Universal image compression with the Karhunen-Loéve transform. In IEEE International Conference on Image Processing (Vol. 2, pp. 61–64).
Zurück zum Zitat Elad, M., & Bruckstein, A. (2001). On sparse signal representations. In IEEE International Conference on Image Processing. Elad, M., & Bruckstein, A. (2001). On sparse signal representations. In IEEE International Conference on Image Processing.
Zurück zum Zitat Elad, M., & Bruckstein, A. (2002). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 48(9), 2558–2567.MathSciNetCrossRefMATH Elad, M., & Bruckstein, A. (2002). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 48(9), 2558–2567.MathSciNetCrossRefMATH
Zurück zum Zitat Elad, M., Figueiredo, M. A. T., & Ma, Y. (2010). On the role of sparse and redundant representations in image processing. Proceedings of the IEEE, 98(6), 972–982.CrossRef Elad, M., Figueiredo, M. A. T., & Ma, Y. (2010). On the role of sparse and redundant representations in image processing. Proceedings of the IEEE, 98(6), 972–982.CrossRef
Zurück zum Zitat Feuer, A., Nemirovski, A. (2003). On sparse representation in pairs of bases. IEEE Transactions on Information Theory, 49(6), 1579–1581.MathSciNetCrossRefMATH Feuer, A., Nemirovski, A. (2003). On sparse representation in pairs of bases. IEEE Transactions on Information Theory, 49(6), 1579–1581.MathSciNetCrossRefMATH
Zurück zum Zitat Fisher, Y. (1995). Fractal Image Compression: Theory and Application. Springer-Verlag Telos.CrossRef Fisher, Y. (1995). Fractal Image Compression: Theory and Application. Springer-Verlag Telos.CrossRef
Zurück zum Zitat Gersho, A., & Gray, R. M. (1992). Vector Quantization and Signal Compression. Boston: Kluwer Academic.CrossRefMATH Gersho, A., & Gray, R. M. (1992). Vector Quantization and Signal Compression. Boston: Kluwer Academic.CrossRefMATH
Zurück zum Zitat Hong, W., Wright, J., Huang, K., & Ma, Y. (2006). Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 15(12), 3655–3671.MathSciNetCrossRef Hong, W., Wright, J., Huang, K., & Ma, Y. (2006). Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 15(12), 3655–3671.MathSciNetCrossRef
Zurück zum Zitat Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH
Zurück zum Zitat Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH
Zurück zum Zitat LePennec, E., & Mallat, S. (2005). Sparse geometric image representation with bandelets. IEEE Transactions on Image Processing, 14(4), 423–438.MathSciNetCrossRef LePennec, E., & Mallat, S. (2005). Sparse geometric image representation with bandelets. IEEE Transactions on Image Processing, 14(4), 423–438.MathSciNetCrossRef
Zurück zum Zitat Mallat, S. (1999). A Wavelet Tour of Signal Processing (2nd ed.). London: Academic.MATH Mallat, S. (1999). A Wavelet Tour of Signal Processing (2nd ed.). London: Academic.MATH
Zurück zum Zitat Meyer, F. (2000). Fast adaptive wavelet packet image compression. IEEE Transactions on Image Processing, 9(5), 792–800.CrossRef Meyer, F. (2000). Fast adaptive wavelet packet image compression. IEEE Transactions on Image Processing, 9(5), 792–800.CrossRef
Zurück zum Zitat Meyer, F. (2002). Image compression with adaptive local cosines. IEEE Transactions on Image Processing, 11(6), 616–629.CrossRef Meyer, F. (2002). Image compression with adaptive local cosines. IEEE Transactions on Image Processing, 11(6), 616–629.CrossRef
Zurück zum Zitat Muresan, D., & Parks, T. (2003). Adaptive principal components and image denoising. In IEEE International Conference on Image Processing. Muresan, D., & Parks, T. (2003). Adaptive principal components and image denoising. In IEEE International Conference on Image Processing.
Zurück zum Zitat Olshausen, B., & D.J.Field (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef Olshausen, B., & D.J.Field (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef
Zurück zum Zitat Pavlovic, V., Moulin, P., & Ramchandran, K. (1998). An integrated framework for adaptive subband image coding. IEEE Transactions on Signal Processing, 47(4), 1024–1038.CrossRef Pavlovic, V., Moulin, P., & Ramchandran, K. (1998). An integrated framework for adaptive subband image coding. IEEE Transactions on Signal Processing, 47(4), 1024–1038.CrossRef
Zurück zum Zitat Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.CrossRefMATH Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.CrossRefMATH
Zurück zum Zitat Rabiee, H., Kashyap, R., & Safavian, S. (1996). Adaptive multiresolution image coding with matching and basis pursuits. In IEEE International Conference on Image Processing. Rabiee, H., Kashyap, R., & Safavian, S. (1996). Adaptive multiresolution image coding with matching and basis pursuits. In IEEE International Conference on Image Processing.
Zurück zum Zitat Ramchandran, K., & Vetterli, M. (1993). Best wavelet packets bases in a rate-distortion sense. IEEE Transactions on Image Processing, 2, 160–175.CrossRef Ramchandran, K., & Vetterli, M. (1993). Best wavelet packets bases in a rate-distortion sense. IEEE Transactions on Image Processing, 2, 160–175.CrossRef
Zurück zum Zitat Ramchandran, K., Vetterli, M., & Herley, C. (1996). Wavelets, subband coding, and best basis. Proceedings of the IEEE, 84(4), 541–560.CrossRef Ramchandran, K., Vetterli, M., & Herley, C. (1996). Wavelets, subband coding, and best basis. Proceedings of the IEEE, 84(4), 541–560.CrossRef
Zurück zum Zitat Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3463.CrossRefMATH Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3463.CrossRefMATH
Zurück zum Zitat Sikora, T., & Makai, B. (1995). Shape-adaptive DCT for generic coding of video. IEEE Transactions on Circuits and Systems For Video Technology, 5, 59–62.CrossRef Sikora, T., & Makai, B. (1995). Shape-adaptive DCT for generic coding of video. IEEE Transactions on Circuits and Systems For Video Technology, 5, 59–62.CrossRef
Zurück zum Zitat Spielman, D., Wang, H., & Wright, J. (2012). Exact recovery of sparsity-used dictionaries. Conference on Learning Theory (COLT). Spielman, D., Wang, H., & Wright, J. (2012). Exact recovery of sparsity-used dictionaries. Conference on Learning Theory (COLT).
Zurück zum Zitat Starck, J.-L., Elad, M., & Donoho, D. (2003). Image decomposition: Separation of texture from piecewise smooth content. In Proceedings of the SPIE (Vol. 5207, pp. 571–582). Starck, J.-L., Elad, M., & Donoho, D. (2003). Image decomposition: Separation of texture from piecewise smooth content. In Proceedings of the SPIE (Vol. 5207, pp. 571–582).
Zurück zum Zitat Vetterli, M., & Kovacevic, J. (1995). Wavelets and subband coding. Upper Saddle River: Prentice-Hall.MATH Vetterli, M., & Kovacevic, J. (1995). Wavelets and subband coding. Upper Saddle River: Prentice-Hall.MATH
Zurück zum Zitat Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM. Special issue on digital multimedia systems, 34(4), 30–44. Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM. Special issue on digital multimedia systems, 34(4), 30–44.
Zurück zum Zitat Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.MathSciNetCrossRef Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.MathSciNetCrossRef
Zurück zum Zitat Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse model selection. In International Conference on Image Processing. Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse model selection. In International Conference on Image Processing.
Zurück zum Zitat Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481–2499.MathSciNetCrossRef Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481–2499.MathSciNetCrossRef
Metadaten
Titel
Image Representation
verfasst von
René Vidal
Yi Ma
S. Shankar Sastry
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87811-9_9

Neuer Inhalt