Skip to main content

2016 | OriginalPaper | Buchkapitel

10. Image Segmentation

verfasst von : René Vidal, Yi Ma, S. Shankar Sastry

Erschienen in: Generalized Principal Component Analysis

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image segmentation is the task of partitioning a natural image into multiple contiguous regions, also known as segments, whereby adjacent regions are separated by salient edges or contours, and each region consists of pixels with homogeneous color or texture. In computer vision, this is widely accepted as a crucial step for any high-level vision tasks such as object recognition and understanding image semantics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that there is even ambiguity in segmentation done by different humans. In later sections, we will see how we could make such human-based evaluation somewhat meaningful.
 
2
We will see how to incorporate pairwise information such as edges into such a simplified framework later. In particular, as we will see, such information can be incorporated through a special initialization to the segmentation algorithm.
 
3
Another popular approach for constructing texture vectors is to use multivariate responses of a fixed 2D texture filter bank. A previous study by (Varma and Zisserman 2003) has argued that the difference in segmentation results between the two approaches is small, and yet it is more expensive to compute 2D filter bank responses.
 
4
The image segmentation example shown in Section 6.​4.​2 in Chapter 6 was done using such a coding length function.
 
5
For a large region with a sufficiently smooth boundary, the number of boundary-crossing windows is significantly smaller than the number of those in the interior. For boundary-crossing windows, their average coding length is roughly proportional to the number of pixels inside the region if the Gaussian distribution is sufficiently isotropic.
 
6
We use the publicly available code for this method available at http://​www.​cs.​sfu.​ca/​~mori/​research/​superpixels/​ with parameter N_sp = 200.
 
7
We will discuss several discrepancy measures in Section 10.4.2, such as the probabilistic Rand index (PRI) and variation of information (VOI).
 
8
The quantitative performance of several existing algorithms was also evaluated in a recent work ((Arbelaez et al. 2009)), which was published roughly at the same time as this work. The reported results therein generally agree with our findings.
 
Literatur
Zurück zum Zitat Arbelaez, P. (2006). Boundary extraction in natural images using ultrametric contour maps. In Workshop on Perceptual Organization in Computer Vision. Arbelaez, P. (2006). Boundary extraction in natural images using ultrametric contour maps. In Workshop on Perceptual Organization in Computer Vision.
Zurück zum Zitat Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2009). From contours to regions: An empirical evaluation. In IEEE Conference on Computer Vision and Pattern Recognition. Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2009). From contours to regions: An empirical evaluation. In IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Comanicu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24, 603–619.CrossRef Comanicu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24, 603–619.CrossRef
Zurück zum Zitat Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Deng, Y., & Manjunath, B. (2001). Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 800–810.CrossRef Deng, Y., & Manjunath, B. (2001). Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 800–810.CrossRef
Zurück zum Zitat Donoser, M., Urschler, M., Hirzer, M., & Bischof, H. (2009). Saliency driven total variation segmentation. In Proceedings of the International Conference on Computer Vision (ICCV). Donoser, M., Urschler, M., Hirzer, M., & Bischof, H. (2009). Saliency driven total variation segmentation. In Proceedings of the International Conference on Computer Vision (ICCV).
Zurück zum Zitat Duda, R., Hart, P., & Stork, D. (2000). Pattern Classification (2nd ed.). Wiley, New York.MATH Duda, R., Hart, P., & Stork, D. (2000). Pattern Classification (2nd ed.). Wiley, New York.MATH
Zurück zum Zitat Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In IEEE International Conference on Computer Vision (pp. 1033–1038). Corfu, Greece.CrossRef Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In IEEE International Conference on Computer Vision (pp. 1033–1038). Corfu, Greece.CrossRef
Zurück zum Zitat Elder, J., & Zucker, S. (1996). Computing contour closures. In Proceedings of the European Conference on Computer Vision (ECCV). Elder, J., & Zucker, S. (1996). Computing contour closures. In Proceedings of the European Conference on Computer Vision (ECCV).
Zurück zum Zitat Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision (IJCV), 59(2), 167–181.CrossRef Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision (IJCV), 59(2), 167–181.CrossRef
Zurück zum Zitat Freixenet, J., Munoz, X., Raba, D., Marti, J., & Cuff, X. (2002). Yet another survey on image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV). Freixenet, J., Munoz, X., Raba, D., Marti, J., & Cuff, X. (2002). Yet another survey on image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV).
Zurück zum Zitat Gevers, T., & Smeulders, A. (1997). Combining region splitting and edge detection through guided Delaunay image subdivision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Gevers, T., & Smeulders, A. (1997). Combining region splitting and edge detection through guided Delaunay image subdivision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Haralick, R., & Shapiro, L. (1985). Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29(1), 100–132.CrossRef Haralick, R., & Shapiro, L. (1985). Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29(1), 100–132.CrossRef
Zurück zum Zitat Jain, A. (1989). Fundamentals of Digital Image Processing. Upper Saddle River: Prentice Hall.MATH Jain, A. (1989). Fundamentals of Digital Image Processing. Upper Saddle River: Prentice Hall.MATH
Zurück zum Zitat Kim, J., Fisher, J., Yezzi, A., Cetin, M., & Willsky, A. (2005). A nonparametric statistical method for image segmentation using information theory and curve evolution. PAMI, 14(10), 1486–1502.MathSciNet Kim, J., Fisher, J., Yezzi, A., Cetin, M., & Willsky, A. (2005). A nonparametric statistical method for image segmentation using information theory and curve evolution. PAMI, 14(10), 1486–1502.MathSciNet
Zurück zum Zitat Kim, T., Lee, K., & Lee, S. (2010). Learning full pairwise affinities for spectral segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Kim, T., Lee, K., & Lee, S. (2010). Learning full pairwise affinities for spectral segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Kurita, T. (1995). An efficient clustering algorithm for region merging. IEICE Transactions of Information and Systems, E78-D(12), 1546–1551. Kurita, T. (1995). An efficient clustering algorithm for region merging. IEICE Transactions of Information and Systems, E78-D(12), 1546–1551.
Zurück zum Zitat Levina, E., & Bickel, P. J. (2006). Texture synthesis and non-parametric resampling of random fields. Annals of Statistics, 34(4), 1751–1773.MathSciNetCrossRefMATH Levina, E., & Bickel, P. J. (2006). Texture synthesis and non-parametric resampling of random fields. Annals of Statistics, 34(4), 1751–1773.MathSciNetCrossRefMATH
Zurück zum Zitat Liu, Y. K., & Zalik, B. (2005). Efficient chain code with Huffman coding. Pattern Recognition, 38(4), 553–557.CrossRef Liu, Y. K., & Zalik, B. (2005). Efficient chain code with Huffman coding. Pattern Recognition, 38(4), 553–557.CrossRef
Zurück zum Zitat Ma, Y., Derksen, H., Hong, W., & Wright, J. (2007). Segmentation of multivariate mixed data via lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1546–1562.CrossRef Ma, Y., Derksen, H., Hong, W., & Wright, J. (2007). Segmentation of multivariate mixed data via lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1546–1562.CrossRef
Zurück zum Zitat Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7–27.CrossRefMATH Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7–27.CrossRefMATH
Zurück zum Zitat Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In IEEE International Conference on Computer Vision. Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In IEEE International Conference on Computer Vision.
Zurück zum Zitat Meila, M. (2005). Comparing clusterings: An axiomatic view. In Proceedings of the International Conference on Machine Learning. Meila, M. (2005). Comparing clusterings: An axiomatic view. In Proceedings of the International Conference on Machine Learning.
Zurück zum Zitat Mobahi, H., Rao, S., Yang, A., & Sastry, S. (2011). Segmentation of natural images by texture and boundary compression. International Journal of Computer Vision, 95(1), 86–98.CrossRef Mobahi, H., Rao, S., Yang, A., & Sastry, S. (2011). Segmentation of natural images by texture and boundary compression. International Journal of Computer Vision, 95(1), 86–98.CrossRef
Zurück zum Zitat Mori, G., Ren, X., Efros, A., & Malik, J. (2004). Recovering human body configurations: Combining segmentation and recognition. In IEEE Conference on Computer Vision and Pattern Recognition. Mori, G., Ren, X., Efros, A., & Malik, J. (2004). Recovering human body configurations: Combining segmentation and recognition. In IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.CrossRef Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.CrossRef
Zurück zum Zitat Rao, S., Mobahi, H., Yang, A., & Sastry, S. (2009). Natural image segmentation with adaptive texture and boundary encoding. In Asian Conference on Computer Vision, 1 (pp. 135–146). Rao, S., Mobahi, H., Yang, A., & Sastry, S. (2009). Natural image segmentation with adaptive texture and boundary encoding. In Asian Conference on Computer Vision, 1 (pp. 135–146).
Zurück zum Zitat Ren, X., Fowlkes, C., & Malik, J. (2005). Scale-invariant contour completion using condition random fields. In IEEE International Conference on Computer Vision. Ren, X., Fowlkes, C., & Malik, J. (2005). Scale-invariant contour completion using condition random fields. In IEEE International Conference on Computer Vision.
Zurück zum Zitat Ren, X., Fowlkes, C., & Malik, J. (2008). Learning probabilistic models for contour completion in natural images. International Journal of Computer Vision, 77, 47–63.CrossRef Ren, X., Fowlkes, C., & Malik, J. (2008). Learning probabilistic models for contour completion in natural images. International Journal of Computer Vision, 77, 47–63.CrossRef
Zurück zum Zitat Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef
Zurück zum Zitat Tremeau, A., & Borel, N. (1997). A region growing and merging algorithm to color segmentation. Pattern Recognition, 30(7), 1191–1204.CrossRef Tremeau, A., & Borel, N. (1997). A region growing and merging algorithm to color segmentation. Pattern Recognition, 30(7), 1191–1204.CrossRef
Zurück zum Zitat Tu, Z., & Zhu, S. (2002). Image segmentation by data-driven Markov Chain Monte Carlo. PAMI, 24(5), 657–673.CrossRef Tu, Z., & Zhu, S. (2002). Image segmentation by data-driven Markov Chain Monte Carlo. PAMI, 24(5), 657–673.CrossRef
Zurück zum Zitat Varma, M., & Zisserman, A. (2003). Texture classification: Are filter banks necessary? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Varma, M., & Zisserman, A. (2003). Texture classification: Are filter banks necessary? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Wang, J., Jia, Y., Hua, X., Zhang, C., & Quan, L. (2008a). Normalized tree partitioning for image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition. Wang, J., Jia, Y., Hua, X., Zhang, C., & Quan, L. (2008a). Normalized tree partitioning for image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Yang, A., Wright, J., Ma, Y., & Sastry, S. (2008). Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 110(2), 212–225.CrossRef Yang, A., Wright, J., Ma, Y., & Sastry, S. (2008). Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 110(2), 212–225.CrossRef
Zurück zum Zitat Yu, S. (2005). Segmentation induced by scale invariance. In IEEE Conference on Computer Vision and Pattern Recognition. Yu, S. (2005). Segmentation induced by scale invariance. In IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Zhu, Q., Song, G., & Shi, J. (2007). Untangling cycles for contour grouping. In Proceedings of the International Conference on Computer Vision (ICCV). Zhu, Q., Song, G., & Shi, J. (2007). Untangling cycles for contour grouping. In Proceedings of the International Conference on Computer Vision (ICCV).
Metadaten
Titel
Image Segmentation
verfasst von
René Vidal
Yi Ma
S. Shankar Sastry
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87811-9_10

Neuer Inhalt