Skip to main content
Erschienen in: Evolutionary Intelligence 3/2019

14.05.2019 | Research Paper

Implementation of self adaptive mutation factor and cross-over probability based differential evolution algorithm for node localization in wireless sensor networks

verfasst von: Visalakshi Annepu, A. Rajesh

Erschienen in: Evolutionary Intelligence | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Node localization or positioning is essential for many position aware protocols in a wireless sensor network. The classical global poisoning system used for node localization is limited because of its high cost and its unavailability in the indoor environments. So, several localization algorithms have been proposed in the recent past to improve localization accuracy and to reduce implementation cost. One of the popular approaches of localization is to define localization as a least square localization (LSL) problem. During optimization of LSL problem, the performance of the classical Gauss–Newton method is limited because it can be trapped by local minima. By contrast, differential evolution (DE) algorithm has high localization accuracy because it has an ability to determine global optimal solution to the LSL problem. However, the convergence speed of the conventional DE algorithm is low as it uses fixed values of mutation factor and cross-over probability. Thus, in this paper, a self-adaptive mutation factor cross-over probability based differential evolution (SA-MCDE) algorithm is proposed for LSL problem to improve convergence speed. The SA-MCDE algorithm adaptively adjusts the mutation factor and cross-over probability in each generation to better explore and exploit the global optimal solution. Thus, improved localization accuracy with high convergence speed is expected from the SA-MCDE algorithm. The rigorous simulation results conducted for several localization algorithms declare that the propose SA-MCDE based localization has about (40–90) % more localization accuracy over the classical techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harl H, Willig A (2005) Protocols and architectures for wireless sensor networks. Wiley, West Sussex Harl H, Willig A (2005) Protocols and architectures for wireless sensor networks. Wiley, West Sussex
2.
Zurück zum Zitat Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40:102–114CrossRef Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40:102–114CrossRef
3.
Zurück zum Zitat Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38:393–422CrossRef Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38:393–422CrossRef
4.
Zurück zum Zitat Chizari H, Poston T, Abd Razak S, Abdullah AH, Salleh S (2014) Local coverage measurement algorithm in GPS-free wireless sensor networks. Ad Hoc Netw 23:1–17CrossRef Chizari H, Poston T, Abd Razak S, Abdullah AH, Salleh S (2014) Local coverage measurement algorithm in GPS-free wireless sensor networks. Ad Hoc Netw 23:1–17CrossRef
5.
Zurück zum Zitat Aspnes J, Eren T, Goldenberg DK et al (2006) A theory of network localization. IEEE Trans Mob Comput 5:1663–1678CrossRef Aspnes J, Eren T, Goldenberg DK et al (2006) A theory of network localization. IEEE Trans Mob Comput 5:1663–1678CrossRef
6.
Zurück zum Zitat Wen F, Liang C (2015) Fine-grained indoor localization using single access point with multiple antennas. IEEE Sens J 15:1538–1544CrossRef Wen F, Liang C (2015) Fine-grained indoor localization using single access point with multiple antennas. IEEE Sens J 15:1538–1544CrossRef
7.
Zurück zum Zitat Tarrío P, Bernardos AM, Casar JR (2012) An energy-efficient strategy for accurate distance estimation in wireless sensor networks. Sensors 12:15438–15466CrossRef Tarrío P, Bernardos AM, Casar JR (2012) An energy-efficient strategy for accurate distance estimation in wireless sensor networks. Sensors 12:15438–15466CrossRef
8.
Zurück zum Zitat Xiong H, Chen Z, Yang B, Ni R (2015) TDoA localization algorithm with compensation of clock offset for wireless sensor networks. China Commun 12:193–201CrossRef Xiong H, Chen Z, Yang B, Ni R (2015) TDoA localization algorithm with compensation of clock offset for wireless sensor networks. China Commun 12:193–201CrossRef
9.
Zurück zum Zitat Liu Y, Hu YH, Pan Q (2012) Distributed, robust acoustic source localization in a wireless sensor network. IEEE Trans Signal Process 60:4350–4359MathSciNetCrossRefMATH Liu Y, Hu YH, Pan Q (2012) Distributed, robust acoustic source localization in a wireless sensor network. IEEE Trans Signal Process 60:4350–4359MathSciNetCrossRefMATH
10.
Zurück zum Zitat Maddumabandara A, Leung H, Liu M (2015) Experimental evaluation of indoor localization using wireless sensor networks. IEEE Sens J 15:5228–5237CrossRef Maddumabandara A, Leung H, Liu M (2015) Experimental evaluation of indoor localization using wireless sensor networks. IEEE Sens J 15:5228–5237CrossRef
11.
Zurück zum Zitat Xu Y, Zhou J, Zhang P (2014) RSS-based source localization when path-loss model parameters are unknown. IEEE Commun Lett 18:1055–1058CrossRef Xu Y, Zhou J, Zhang P (2014) RSS-based source localization when path-loss model parameters are unknown. IEEE Commun Lett 18:1055–1058CrossRef
12.
Zurück zum Zitat Bulusu N, Heidemann J, Estrin D (2000) GPS-less low-cost outdoor localization for very small devices. IEEE Pers Commun 7:28–34CrossRef Bulusu N, Heidemann J, Estrin D (2000) GPS-less low-cost outdoor localization for very small devices. IEEE Pers Commun 7:28–34CrossRef
13.
Zurück zum Zitat Niculescu D, Nath B (2003) DV based positioning in ad hoc networks. Telecommun Syst 22:267–280CrossRef Niculescu D, Nath B (2003) DV based positioning in ad hoc networks. Telecommun Syst 22:267–280CrossRef
14.
Zurück zum Zitat Liu Y (2011) An adaptive multi-hop distance localization algorithm in WSN. Manuf Autom 33:161–163 Liu Y (2011) An adaptive multi-hop distance localization algorithm in WSN. Manuf Autom 33:161–163
15.
Zurück zum Zitat Cheng BH, Vandenberghe L, Yao K (2009) Distributed algorithm for node localization in wireless ad-hoc networks. ACM Trans Sens Netw 6:8–20CrossRef Cheng BH, Vandenberghe L, Yao K (2009) Distributed algorithm for node localization in wireless ad-hoc networks. ACM Trans Sens Netw 6:8–20CrossRef
17.
Zurück zum Zitat Arora S, Kaur R (2017) Nature inspired range based wireless sensor node localization algorithms. Int J Interact Multimed Artif Intell 4:7–17 Arora S, Kaur R (2017) Nature inspired range based wireless sensor node localization algorithms. Int J Interact Multimed Artif Intell 4:7–17
18.
Zurück zum Zitat Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335CrossRef Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335CrossRef
23.
Zurück zum Zitat Moravec J, Pošík P (2014) A comparative study: the effect of the perturbation vector type in the differential evolution algorithm on the accuracy of robot pose and heading estimation. Evol Intel 6:171–191CrossRef Moravec J, Pošík P (2014) A comparative study: the effect of the perturbation vector type in the differential evolution algorithm on the accuracy of robot pose and heading estimation. Evol Intel 6:171–191CrossRef
24.
Zurück zum Zitat Harikrishnan R, Jawahar Senthil Kumar V, Sridevi P (2016) A comparative analysis of intelligent algorithms for localization in wireless sensor networks. Wirel Pers Commun 87:1057–1069CrossRef Harikrishnan R, Jawahar Senthil Kumar V, Sridevi P (2016) A comparative analysis of intelligent algorithms for localization in wireless sensor networks. Wirel Pers Commun 87:1057–1069CrossRef
26.
Zurück zum Zitat Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359MathSciNetCrossRefMATH Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359MathSciNetCrossRefMATH
27.
Zurück zum Zitat Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657CrossRef Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657CrossRef
28.
Zurück zum Zitat Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417CrossRef Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417CrossRef
29.
Zurück zum Zitat Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13:945–958CrossRef Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13:945–958CrossRef
30.
Zurück zum Zitat Brest J, Maucec MS (2011) Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput 15:2157–2174CrossRef Brest J, Maucec MS (2011) Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput 15:2157–2174CrossRef
Metadaten
Titel
Implementation of self adaptive mutation factor and cross-over probability based differential evolution algorithm for node localization in wireless sensor networks
verfasst von
Visalakshi Annepu
A. Rajesh
Publikationsdatum
14.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Evolutionary Intelligence / Ausgabe 3/2019
Print ISSN: 1864-5909
Elektronische ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-019-00239-0

Weitere Artikel der Ausgabe 3/2019

Evolutionary Intelligence 3/2019 Zur Ausgabe