Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2016

29.01.2016

Improved efficiency of plasmonic tin sulfide solar cells

verfasst von: Priyal Jain, Poonam Shokeen, P. Arun

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar cells with the structure ITO–PEDOT:PSS–Ag:SnS–Al were fabricated with the active layer of tin sulphide with silver nano-particles (Ag:SnS) grown by thermal co-evaporation. To understand the influence of the silver nanoparticles on the energy conversion process, cells with varying active layer thicknesses were compared experimentally and theoretically with corresponding pristine ITO–PEDOT:PSS–SnS–Al cells . Experimental results showed that the Ag nanoparticles act as scattering centers, resulting in longer optical path lengths for incident light. Theoretically we have shown that this in turn results in more charge carriers being generated and thus enhancing the efficiency of the structure as compared to the pristine ITO–PEDOT:PSS–SnS–Al structure. The fabricated plasmonic solar cells of SnS showed an improvement in efficiency of more than 67 %. The results are encouraging and suggests more concerted effort needs to be made on SnS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Wang, J. Zhao, M.A. Green, 24 % Efficient silicon solar cells. Appl. Phys. Lett. 57, 602 (1990)CrossRef A. Wang, J. Zhao, M.A. Green, 24 % Efficient silicon solar cells. Appl. Phys. Lett. 57, 602 (1990)CrossRef
2.
Zurück zum Zitat T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15, 1193 (2005)CrossRef T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15, 1193 (2005)CrossRef
3.
Zurück zum Zitat G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995)CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995)CrossRef
4.
Zurück zum Zitat S. Wagner, J.L. Shay, K.J. Bachmann, E. Buehler, pInP/nCdS solar cells and photovoltaic detectors. Appl. Phys. Lett. 26, 22 (1975)CrossRef S. Wagner, J.L. Shay, K.J. Bachmann, E. Buehler, pInP/nCdS solar cells and photovoltaic detectors. Appl. Phys. Lett. 26, 22 (1975)CrossRef
5.
Zurück zum Zitat A.G. Aberle, Thin film solar cells. Thin Solid Films 517, 4706 (2009)CrossRef A.G. Aberle, Thin film solar cells. Thin Solid Films 517, 4706 (2009)CrossRef
6.
Zurück zum Zitat W. Kriihler, Amorphous thin-film solar cells. Appl. Phys. A 53, 54 (1991)CrossRef W. Kriihler, Amorphous thin-film solar cells. Appl. Phys. A 53, 54 (1991)CrossRef
7.
Zurück zum Zitat R.W. Birkmire, E. Eser, Polycrystalline thin film solar cells: present status and future potential. Annu. Rev. Mater. Sci. 27, 625 (1997)CrossRef R.W. Birkmire, E. Eser, Polycrystalline thin film solar cells: present status and future potential. Annu. Rev. Mater. Sci. 27, 625 (1997)CrossRef
8.
Zurück zum Zitat M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1 (2015)CrossRef M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1 (2015)CrossRef
9.
Zurück zum Zitat K.T.R. Reddy, N.K. Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041 (2006)CrossRef K.T.R. Reddy, N.K. Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041 (2006)CrossRef
10.
Zurück zum Zitat D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovolatic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500 (2009)CrossRef D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovolatic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500 (2009)CrossRef
11.
Zurück zum Zitat C. Piliego, L. Protesescu, S.Z. Bisri, M.V. Kovalenkobc, M.A. Loi, 5.2 % Efficient PbS nanocrystal Schottky solar cell. Energy Environ. Sci. 6, 3054 (2013)CrossRef C. Piliego, L. Protesescu, S.Z. Bisri, M.V. Kovalenkobc, M.A. Loi, 5.2 % Efficient PbS nanocrystal Schottky solar cell. Energy Environ. Sci. 6, 3054 (2013)CrossRef
12.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)CrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)CrossRef
13.
Zurück zum Zitat C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New Yark, 1983) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New Yark, 1983)
14.
Zurück zum Zitat K.R. Catchpole, A. Polman, Plasmonic solar cells. Opt. Express 16, 21793 (2008)CrossRef K.R. Catchpole, A. Polman, Plasmonic solar cells. Opt. Express 16, 21793 (2008)CrossRef
15.
Zurück zum Zitat P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)CrossRef P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)CrossRef
16.
Zurück zum Zitat D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006)CrossRef D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006)CrossRef
17.
Zurück zum Zitat D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005)CrossRef D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005)CrossRef
18.
Zurück zum Zitat S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)CrossRef S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)CrossRef
19.
Zurück zum Zitat R.B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A.K. Pradhan, U.N. Roy, Y. Cui, A. Burger, Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett. 91, 191111 (2007)CrossRef R.B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A.K. Pradhan, U.N. Roy, Y. Cui, A. Burger, Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett. 91, 191111 (2007)CrossRef
20.
Zurück zum Zitat O. Stenzel, A. Stendhal, K. Voigtsberger, C.V. Borczyskowski, Enhancement of the photovoltac conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol. Energy Mater. Sol. Cells 37, 337 (1995)CrossRef O. Stenzel, A. Stendhal, K. Voigtsberger, C.V. Borczyskowski, Enhancement of the photovoltac conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol. Energy Mater. Sol. Cells 37, 337 (1995)CrossRef
21.
Zurück zum Zitat B.P. Rand, P. Peumans, S.R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519 (2004)CrossRef B.P. Rand, P. Peumans, S.R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519 (2004)CrossRef
22.
Zurück zum Zitat A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J.V.D. Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 013504 (2008)CrossRef A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J.V.D. Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 013504 (2008)CrossRef
23.
Zurück zum Zitat P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS based solar cells. Adv. Energy Mater. 1400496, 1 (2014) P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS based solar cells. Adv. Energy Mater. 1400496, 1 (2014)
24.
Zurück zum Zitat B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications. Sol. Energy Mater. Sol. Cells 92, 1099 (2008)CrossRef B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications. Sol. Energy Mater. Sol. Cells 92, 1099 (2008)CrossRef
25.
Zurück zum Zitat H. Noguchi, A. Setiyadi, H. Tanamora, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325 (1994)CrossRef H. Noguchi, A. Setiyadi, H. Tanamora, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325 (1994)CrossRef
26.
Zurück zum Zitat M. Ristov, G. Sinadinovski, M. Mitreski, M. Ristova, Photovoltaic cells based on chemically deposited p-type SnS. Sol. Energy Mater. Sol. Cells 69, 17 (2001)CrossRef M. Ristov, G. Sinadinovski, M. Mitreski, M. Ristova, Photovoltaic cells based on chemically deposited p-type SnS. Sol. Energy Mater. Sol. Cells 69, 17 (2001)CrossRef
27.
Zurück zum Zitat A. Stavrinadis, J.M. Smith, C.A. Cattley, A.G. Cook, P.S. Grant, A.A.R. Watt, SnS/PbS nanocrystal heterojunction photovoltaics. J. Nanotech. 21, 1 (2010)CrossRef A. Stavrinadis, J.M. Smith, C.A. Cattley, A.G. Cook, P.S. Grant, A.A.R. Watt, SnS/PbS nanocrystal heterojunction photovoltaics. J. Nanotech. 21, 1 (2010)CrossRef
28.
Zurück zum Zitat F. Tan, S. Qu, X. Zeng, C. Zhang, M. Shi, Z. Wang, L. Jin, Y. Bi, J. Cao, Z. Wang, Y. Hou, F. Teng, Z. Feng, Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid State Commun. 150, 58 (2010)CrossRef F. Tan, S. Qu, X. Zeng, C. Zhang, M. Shi, Z. Wang, L. Jin, Y. Bi, J. Cao, Z. Wang, Y. Hou, F. Teng, Z. Feng, Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid State Commun. 150, 58 (2010)CrossRef
29.
Zurück zum Zitat P. Jain, P. Arun, Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure (under review). arXiv:1405.6013 P. Jain, P. Arun, Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure (under review). arXiv:​1405.​6013
30.
Zurück zum Zitat P. Jain, P. Arun, Localized surface plasmon resonance in SnS: Ag nano-composite films. J. Appl. Phys. 115, 204512 (2014)CrossRef P. Jain, P. Arun, Localized surface plasmon resonance in SnS: Ag nano-composite films. J. Appl. Phys. 115, 204512 (2014)CrossRef
31.
Zurück zum Zitat Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, M.G. Kanatzidis, Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J Mater. Chem. A 2, 17302 (2014)CrossRef Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, M.G. Kanatzidis, Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J Mater. Chem. A 2, 17302 (2014)CrossRef
32.
Zurück zum Zitat C. Fisker, T.G. Pedersen, Opimization of imprintable nanostructured a-Si solar cells: FDTD study. Opt. Express 21, A209 (2013)CrossRef C. Fisker, T.G. Pedersen, Opimization of imprintable nanostructured a-Si solar cells: FDTD study. Opt. Express 21, A209 (2013)CrossRef
33.
Zurück zum Zitat J. Grandidier, M.G. Deceglie, D.M. Callahan, H.A. Atwater, Proc. SPIE 8256, 825603-1 (2012) J. Grandidier, M.G. Deceglie, D.M. Callahan, H.A. Atwater, Proc. SPIE 8256, 825603-1 (2012)
34.
Zurück zum Zitat W.E. Sha, W.C. Choy, W.C. Chew, A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Opt. Express 18, 5993 (2010)CrossRef W.E. Sha, W.C. Choy, W.C. Chew, A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Opt. Express 18, 5993 (2010)CrossRef
35.
Zurück zum Zitat K. Jager, D.N.P. Linssen, O. Isabella, M. Zeman, Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method. Opt. Express 23, A1060 (2015)CrossRef K. Jager, D.N.P. Linssen, O. Isabella, M. Zeman, Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method. Opt. Express 23, A1060 (2015)CrossRef
36.
Zurück zum Zitat A. Jakhar, A. Jamdagni, A. Bakshi, T. Verma, V. Shukla, P. Jain, N. Sinha, P. Arun, Solid State Commun. 168, 31 (2013)CrossRef A. Jakhar, A. Jamdagni, A. Bakshi, T. Verma, V. Shukla, P. Jain, N. Sinha, P. Arun, Solid State Commun. 168, 31 (2013)CrossRef
39.
Zurück zum Zitat J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, N.S. Sariciftci, Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives. Thin Solid Films 536, 211 (2013)CrossRef J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, N.S. Sariciftci, Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives. Thin Solid Films 536, 211 (2013)CrossRef
40.
Zurück zum Zitat E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985) E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)
41.
Zurück zum Zitat P. Jain, P. Arun, Parameters influencing the optical properties of SnS thin films. J. Semicond. 34, 093004-1 (2013)CrossRef P. Jain, P. Arun, Parameters influencing the optical properties of SnS thin films. J. Semicond. 34, 093004-1 (2013)CrossRef
42.
Zurück zum Zitat P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548, 241 (2013)CrossRef P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548, 241 (2013)CrossRef
Metadaten
Titel
Improved efficiency of plasmonic tin sulfide solar cells
verfasst von
Priyal Jain
Poonam Shokeen
P. Arun
Publikationsdatum
29.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4401-0

Weitere Artikel der Ausgabe 5/2016

Journal of Materials Science: Materials in Electronics 5/2016 Zur Ausgabe

Neuer Inhalt