Skip to main content
Erschienen in: Journal of Electronic Materials 7/2021

16.04.2021 | Original Research Article

Improved Performance of an Electronic Waste Based Cost-Effective Microwave Absorber Using Cavitation

verfasst von: Ravi Yadav, Ravi Panwar

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The requisition of cost-effective practical microwave absorbing material (MAM) to deplete electromagnetic (EM) waves has garnered much interest in current times. Aimed at reinforcing the electronic waste (e-waste) management and in the exploration of broadband absorber structure, a compositional variation of the hazardous printed circuit board and zinc-carbon battery cell (Zn-C) is investigated using a facile top-down fabrication technique. The dielectric analysis of samples is carried out in the range of 8.2–12.4 GHz (i.e., X-band) using a waveguide-based microwave measurement technique. A 1.7-mm-thick single-layer absorber achieves a minimum reflection coefficient (RC) of − 24.9 dB at 10.8 GHz with a 2.7 GHz bandwidth (BW) below − 10 dB threshold. Furthermore, the enhancement in absorption BW is accomplished by adding an array of periodic air cavities (grid-type structure) which results in an increase of BW below − 10 dB threshold. Moreover, the integration of planar structure with a grid-type structure imparts more prominent results and acquires 4.0 GHz BW below − 10 dB threshold with 1.7-mm coating thickness. In addition, the influence of the oblique angle of incidence is also investigated for optimized structures. The reliability of the obtained results has been verified by the finite-integration technique via the 3D modeling and EM analysis in computer simulation technology. The inclusion of air gap in the absorbers standardize the EM properties of the composite and result in impedance matching at a higher frequency. The results obtained demonstrate the practicability of the suggested structure and proved to be cutting-edge technology for researchers. It reveals that the e-waste composites have enormous potential in the development of lightweight, broadband, and cost-effective MAM for stealth applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Yousef, M. Tatariants, M. Tichonovas, R. Bendikiene, and G. Denafas, J. Clean. Prod 187, 780 (2018).CrossRef S. Yousef, M. Tatariants, M. Tichonovas, R. Bendikiene, and G. Denafas, J. Clean. Prod 187, 780 (2018).CrossRef
2.
Zurück zum Zitat R. Qiu, M. Lin, J. Ruan, Y. Fu, J. Hu, M. Deng, Y. Tang, and R. Qiu, J. Clean. Prod 244, 118690 (2020).CrossRef R. Qiu, M. Lin, J. Ruan, Y. Fu, J. Hu, M. Deng, Y. Tang, and R. Qiu, J. Clean. Prod 244, 118690 (2020).CrossRef
3.
Zurück zum Zitat R. Qiu, M. Lin, B. Qin, Z. Xu, and J. Ruan, J. Clean. Prod 279, 123738 (2020).CrossRef R. Qiu, M. Lin, B. Qin, Z. Xu, and J. Ruan, J. Clean. Prod 279, 123738 (2020).CrossRef
4.
Zurück zum Zitat R.R. Srivastava, S. Ilyas, H. Kim, S. Choi, H.B. Trinh, M.A. Ghauri, and N. Ilyas, J. Chem. Technol. Biotechnol. 95, 2796 (2020).CrossRef R.R. Srivastava, S. Ilyas, H. Kim, S. Choi, H.B. Trinh, M.A. Ghauri, and N. Ilyas, J. Chem. Technol. Biotechnol. 95, 2796 (2020).CrossRef
5.
Zurück zum Zitat P. Hadi, M. Xu, C.S.K. Lin, C.W. Hui, and G. McKay, J. Hazard. Mater. 283, 234 (2015).CrossRef P. Hadi, M. Xu, C.S.K. Lin, C.W. Hui, and G. McKay, J. Hazard. Mater. 283, 234 (2015).CrossRef
7.
Zurück zum Zitat S. Vadivel, W. Tejangkura, and M. Sawangphruk, ACS Omega 5, 15240 (2020).CrossRef S. Vadivel, W. Tejangkura, and M. Sawangphruk, ACS Omega 5, 15240 (2020).CrossRef
8.
Zurück zum Zitat S. Mao, W. Gu, J. Bai, B. Dong, Q. Huang, J. Zhao, X. Zhuang, C. Zhang, W. Yuan, and J. Wang, J. Environ. Manage. 266, 110577 (2020).CrossRef S. Mao, W. Gu, J. Bai, B. Dong, Q. Huang, J. Zhao, X. Zhuang, C. Zhang, W. Yuan, and J. Wang, J. Environ. Manage. 266, 110577 (2020).CrossRef
9.
Zurück zum Zitat R. Panwar, S. Puthucheri, D. Singh, and V. Agarwala, IEEE Trans. Magn. 51, 1 (2015).CrossRef R. Panwar, S. Puthucheri, D. Singh, and V. Agarwala, IEEE Trans. Magn. 51, 1 (2015).CrossRef
10.
Zurück zum Zitat K.J. Vinoy, and R.M. Jha, Radar absorbing materials—From theory to design and characterization (Boston: Kluwer Academic Publishers, 1996), pp. 75–95.CrossRef K.J. Vinoy, and R.M. Jha, Radar absorbing materials—From theory to design and characterization (Boston: Kluwer Academic Publishers, 1996), pp. 75–95.CrossRef
11.
Zurück zum Zitat C. Holloway, R.R. Delyser, R.F. German, P. McKenna, and M. Kanda, IEEE Trans. Electromagn. Compat. 39, 33 (1997).CrossRef C. Holloway, R.R. Delyser, R.F. German, P. McKenna, and M. Kanda, IEEE Trans. Electromagn. Compat. 39, 33 (1997).CrossRef
12.
Zurück zum Zitat U.J. Mahanta, M. Borah, N.S. Bhattacharyya, and J.P. Gogoi, J. Electron. Mater. 48, 2438 (2019).CrossRef U.J. Mahanta, M. Borah, N.S. Bhattacharyya, and J.P. Gogoi, J. Electron. Mater. 48, 2438 (2019).CrossRef
13.
14.
Zurück zum Zitat N. Joseph, J. Varghese, and M.T. Sebastian, J. Mater. Chem. C. 4, 999 (2016).CrossRef N. Joseph, J. Varghese, and M.T. Sebastian, J. Mater. Chem. C. 4, 999 (2016).CrossRef
15.
Zurück zum Zitat Y. Naito, H. Anzai, T. Mizumoto, M. Takahashi, Ferrite grid electromagnetic wave absorbers. Int. Symp. EM Comp. 254, (1993). Y. Naito, H. Anzai, T. Mizumoto, M. Takahashi, Ferrite grid electromagnetic wave absorbers. Int. Symp. EM Comp. 254, (1993).
16.
17.
Zurück zum Zitat Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, and X. Zheng, Carbon 115, 493 (2017).CrossRef Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, and X. Zheng, Carbon 115, 493 (2017).CrossRef
18.
Zurück zum Zitat N. Joseph, J. Varghese, and M.T. Sebastian, J. Electron. Mater. 49, 1638 (2020).CrossRef N. Joseph, J. Varghese, and M.T. Sebastian, J. Electron. Mater. 49, 1638 (2020).CrossRef
19.
Zurück zum Zitat Y. Cheng, Y. Zou, H. Luo, F. Chen, and X. Mao, J. Electron. Mater. 48, 3936 (2019). Y. Cheng, Y. Zou, H. Luo, F. Chen, and X. Mao, J. Electron. Mater. 48, 3936 (2019).
20.
Zurück zum Zitat N. Joseph, J. Varghese, and M.T. Sebastian, RSC Adv. 5, 20459 (2015).CrossRef N. Joseph, J. Varghese, and M.T. Sebastian, RSC Adv. 5, 20459 (2015).CrossRef
21.
Zurück zum Zitat N. Joseph, J. Varghese, and M.T. Sebastian, Compos. B Eng. 123, 271 (2017).CrossRef N. Joseph, J. Varghese, and M.T. Sebastian, Compos. B Eng. 123, 271 (2017).CrossRef
22.
23.
Zurück zum Zitat B. Ebin, M. Petranikova, B.M. Steenari, and C. Ekberg, J. Anal. Appl. Pyrolysis 121, 333 (2016).CrossRef B. Ebin, M. Petranikova, B.M. Steenari, and C. Ekberg, J. Anal. Appl. Pyrolysis 121, 333 (2016).CrossRef
24.
25.
26.
Zurück zum Zitat J.A. Kong, Electromagnetic wave theory, 1st ed., (New York: Wiley, 1986), pp. 110–131. J.A. Kong, Electromagnetic wave theory, 1st ed., (New York: Wiley, 1986), pp. 110–131.
27.
Zurück zum Zitat X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, and C. Wong, J. Alloys Compd. 662, 409 (2016).CrossRef X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, and C. Wong, J. Alloys Compd. 662, 409 (2016).CrossRef
28.
Zurück zum Zitat R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, J. Clean. Prod. 291, 125928 (2021).CrossRef R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, J. Clean. Prod. 291, 125928 (2021).CrossRef
29.
30.
31.
Zurück zum Zitat Y. Duan, and H. Guan, Microwave absorbing materials (Florida: CRC Press, 2016).CrossRef Y. Duan, and H. Guan, Microwave absorbing materials (Florida: CRC Press, 2016).CrossRef
32.
Zurück zum Zitat A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002).CrossRef A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002).CrossRef
34.
Zurück zum Zitat L. Zhang, H. Zhu, Y. Song, Y. Zhang, and Y. Huang, Mater. Sci. Eng. B 153, 78 (2008).CrossRef L. Zhang, H. Zhu, Y. Song, Y. Zhang, and Y. Huang, Mater. Sci. Eng. B 153, 78 (2008).CrossRef
35.
36.
37.
Zurück zum Zitat Y. Liu, F. Luo, J. Su, W. Zhou, and D. Zhu, J. Magn. Magn. 365, 126 (2014).CrossRef Y. Liu, F. Luo, J. Su, W. Zhou, and D. Zhu, J. Magn. Magn. 365, 126 (2014).CrossRef
38.
Zurück zum Zitat P. Wang, X. Wang, L. Qiao, J. Zhang, G. Wang, B. Duan, T. Wang, and F. Li, J. Magn. Magn. 468, 193 (2018).CrossRef P. Wang, X. Wang, L. Qiao, J. Zhang, G. Wang, B. Duan, T. Wang, and F. Li, J. Magn. Magn. 468, 193 (2018).CrossRef
39.
Zurück zum Zitat D. Zhao, F. Luo, W. Zhou, and D. Zhu, Int. J. Appl. Ceram. Technol. 10, E88 (2013).CrossRef D. Zhao, F. Luo, W. Zhou, and D. Zhu, Int. J. Appl. Ceram. Technol. 10, E88 (2013).CrossRef
40.
Zurück zum Zitat R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, and J. He, Mater. Lett. 215, 229 (2018).CrossRef R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, and J. He, Mater. Lett. 215, 229 (2018).CrossRef
41.
Zurück zum Zitat X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie, Y. Jiang, W. Zhong, and Y. Du, Sci. Rep. 6, 1 (2016).CrossRef X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie, Y. Jiang, W. Zhong, and Y. Du, Sci. Rep. 6, 1 (2016).CrossRef
42.
Zurück zum Zitat L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, and L. Zhang, J. Phys. Chem. C 117, 19701 (2013).CrossRef L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, and L. Zhang, J. Phys. Chem. C 117, 19701 (2013).CrossRef
43.
Zurück zum Zitat B. Kuang, Y. Dou, Z. Wang, M. Ning, H. Jin, D. Guo, M. Cao, X. Fang, Y. Zhao, and J. Li, Appl. Surf. Sci. 445, 383 (2018).CrossRef B. Kuang, Y. Dou, Z. Wang, M. Ning, H. Jin, D. Guo, M. Cao, X. Fang, Y. Zhao, and J. Li, Appl. Surf. Sci. 445, 383 (2018).CrossRef
45.
Zurück zum Zitat S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, and T.C. Shami, Ceram. Int. 37, 2631 (2011).CrossRef S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, and T.C. Shami, Ceram. Int. 37, 2631 (2011).CrossRef
46.
Zurück zum Zitat G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, and Y. Qin, J. Mater. Chem. 3, 2734 (2015).CrossRef G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, and Y. Qin, J. Mater. Chem. 3, 2734 (2015).CrossRef
Metadaten
Titel
Improved Performance of an Electronic Waste Based Cost-Effective Microwave Absorber Using Cavitation
verfasst von
Ravi Yadav
Ravi Panwar
Publikationsdatum
16.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08900-0

Weitere Artikel der Ausgabe 7/2021

Journal of Electronic Materials 7/2021 Zur Ausgabe

Neuer Inhalt