Skip to main content
Erschienen in: Journal of Materials Science 27/2020

22.06.2020 | Chemical routes to materials

Improved performance of photoelectrochemical water oxidation from nanostructured hematite photoanode with an immobilized molecular cobalt salophen catalyst

verfasst von: Yan Mei, Ting-Ting Li, Jinjie Qian, Hongwei Li, Yue-Qing Zheng

Erschienen in: Journal of Materials Science | Ausgabe 27/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of molecule-semiconductor hybrid photoanodes is considered to possess the potential in fabricating practical photoelectrochemical (PEC) devices with high efficiency. Herein, α-Fe2O3 photoanode with morphology of highly interconnected and aligned nanorod arrays have been successfully grown on fluorine-doped tin oxide, and its PEC activity toward water oxidation was facilely optimized by controlling the electrodeposition time. And then, this photoanode was modified with a Co(II) salophen complex with pyrene moiety via a hydrophobic interaction to construct a hybrid photoanode. The obtained photoanode manifests remarkable enhanced PEC performance relative to pristine α-Fe2O3, affording a remarkable photocurrent response of 0.7 mA cm−2 at 1.23 V versus reversible hydrogen electrode and a low catalytic onset potential of 0.93 V in a neutral aqueous solution under simulated sunlight illumination (100 mW cm−2). Furthermore, the durability test indicates that this hybrid photoanode possesses good stability and a Faradaic efficiency of nearly 100% for oxygen evolution. The superior PEC performance is mainly due to the synergistic contribution of the Co(II) salophen co-catalyst and the α-Fe2O3 nanorod arrays, in which the co-catalyst greatly suppresses the surface holes/electrons recombination and accelerates the surface oxygen evolution reaction kinetics.

Graphic abstract

One novel hybrid photoanode integrating α-Fe2O3 nanorod arrays semiconductor with Co(II) salophen co-catalyst is facilely fabricated and demonstrates remarkable photoelectrochemical performance toward water oxidation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS (2015) Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem Rev 115:12839–12887 Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS (2015) Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem Rev 115:12839–12887
2.
Zurück zum Zitat Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473 Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473
3.
Zurück zum Zitat Zhang B, Wang L, Zhang Y, Ding Y, Bi Y (2018) Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed 57:2248–2252 Zhang B, Wang L, Zhang Y, Ding Y, Bi Y (2018) Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed 57:2248–2252
5.
Zurück zum Zitat Wang Y, Ge Z, Li X, Zhao J, Ma B, Chen Y (2020) Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J Colloid Interface Sci 567:308–315 Wang Y, Ge Z, Li X, Zhao J, Ma B, Chen Y (2020) Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J Colloid Interface Sci 567:308–315
6.
Zurück zum Zitat Pei L, Lv B, Wang S, Yu Z, Yan S, Abe R, Zou Z (2018) Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl Energy Mater 1:4150–4157 Pei L, Lv B, Wang S, Yu Z, Yan S, Abe R, Zou Z (2018) Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl Energy Mater 1:4150–4157
7.
Zurück zum Zitat Shan B, Nayak A, Sampaio RN, Eberhart MS, Troian-Gautier L, Brennaman MK, Meyer GJ, Meyer TJ (2018) Direct photoactivation of a nickel based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy Environ Sci 11:447–455 Shan B, Nayak A, Sampaio RN, Eberhart MS, Troian-Gautier L, Brennaman MK, Meyer GJ, Meyer TJ (2018) Direct photoactivation of a nickel based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy Environ Sci 11:447–455
8.
Zurück zum Zitat Zhou Q, Li TT, Wang J, Guo F, Zheng YQ (2019) Hierarchical Cu2S NRs@CoS core–shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim Acta 296:1035–1041 Zhou Q, Li TT, Wang J, Guo F, Zheng YQ (2019) Hierarchical Cu2S NRs@CoS core–shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim Acta 296:1035–1041
9.
Zurück zum Zitat Li TT, Zhou Q, Qian J, Hu Y, Zheng YQ (2019) Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochim Acta 307:92–99 Li TT, Zhou Q, Qian J, Hu Y, Zheng YQ (2019) Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochim Acta 307:92–99
10.
Zurück zum Zitat Kennedy JH, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709–714 Kennedy JH, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709–714
11.
Zurück zum Zitat Lewis NS (2016) Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 11:1010–1019 Lewis NS (2016) Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 11:1010–1019
12.
Zurück zum Zitat Sivula K, Formal FL, Gratzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449 Sivula K, Formal FL, Gratzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449
13.
Zurück zum Zitat Mesa CA, Francàs L, Nie KQ, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR (2020) Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 12:82–89 Mesa CA, Francàs L, Nie KQ, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR (2020) Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 12:82–89
14.
Zurück zum Zitat Wang GM, Ling YC, Wheeler DA, George KEN, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509 Wang GM, Ling YC, Wheeler DA, George KEN, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509
15.
Zurück zum Zitat Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125 Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125
16.
Zurück zum Zitat Malviya KD, Dotan H, Shlenkevich D, Tsyganok A, Mor H, Rothschild A (2016) Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J Mater Chem 4:3091–3099 Malviya KD, Dotan H, Shlenkevich D, Tsyganok A, Mor H, Rothschild A (2016) Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J Mater Chem 4:3091–3099
17.
Zurück zum Zitat Hou Y, Zuo F, Dagg A, Feng P (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem Int Ed 52:1248–1252 Hou Y, Zuo F, Dagg A, Feng P (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem Int Ed 52:1248–1252
18.
Zurück zum Zitat Han YS, Shin S, Kim DH, Park IJ, Kim JS, Huang PS, Lee JK, Cho IS, Zheng X (2018) Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ Sci 11:1299–1306 Han YS, Shin S, Kim DH, Park IJ, Kim JS, Huang PS, Lee JK, Cho IS, Zheng X (2018) Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ Sci 11:1299–1306
19.
Zurück zum Zitat Tilley SD, Cornuz M, Sivula K, Gratzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408 Tilley SD, Cornuz M, Sivula K, Gratzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408
20.
Zurück zum Zitat Dias P, Andrade L, Mendes A (2017) Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38:218–231 Dias P, Andrade L, Mendes A (2017) Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38:218–231
21.
Zurück zum Zitat Zhang B, Li F, Wang X, Zhou X, Li H, Yi J, Sun L (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt-oxo cubanes. ACS Catal 4:804–809 Zhang B, Li F, Wang X, Zhou X, Li H, Yi J, Sun L (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt-oxo cubanes. ACS Catal 4:804–809
22.
Zurück zum Zitat Tang PY, Han L, Hegner FS, Paciok P, Arbiol J (2019) Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv Energy Mater 34:1901836 Tang PY, Han L, Hegner FS, Paciok P, Arbiol J (2019) Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv Energy Mater 34:1901836
23.
Zurück zum Zitat Blasco-Ahicart M, Soriano-López J, Carbó JJ, Poblet JM, Galan-Mascaros JR (2018) Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat Chem 10:24–30 Blasco-Ahicart M, Soriano-López J, Carbó JJ, Poblet JM, Galan-Mascaros JR (2018) Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat Chem 10:24–30
24.
Zurück zum Zitat Yin Q, Hill CL (2018) Water splitting: passing the acid test. Nat Chem 10:6–7 Yin Q, Hill CL (2018) Water splitting: passing the acid test. Nat Chem 10:6–7
25.
Zurück zum Zitat Li T, Kasian O, Cherevko S, Zhang S, Geiger S, Scheu C, Felfer P, Raabe D, Gault B, Mayrhofer KJJ (2018) Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat Catal 1:300–305 Li T, Kasian O, Cherevko S, Zhang S, Geiger S, Scheu C, Felfer P, Raabe D, Gault B, Mayrhofer KJJ (2018) Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat Catal 1:300–305
26.
Zurück zum Zitat Yuan Y, Gu J, Ye KH, Chai Z, Yu X, Chen X, Mai W (2016) Combining bulk/surface engineering of hematite to synergistically improve its photoelectrochemical water splitting performance. ACS Appl Mater Interfaces 8:16071–16077 Yuan Y, Gu J, Ye KH, Chai Z, Yu X, Chen X, Mai W (2016) Combining bulk/surface engineering of hematite to synergistically improve its photoelectrochemical water splitting performance. ACS Appl Mater Interfaces 8:16071–16077
27.
Zurück zum Zitat Carroll GM, Zhong DK, Gamelin DR (2015) Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes. Energy Environ Sci 8:577–584 Carroll GM, Zhong DK, Gamelin DR (2015) Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes. Energy Environ Sci 8:577–584
28.
Zurück zum Zitat Yu Q, Meng XG, Wang T, Li P, Ye JH (2015) Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv Funct Mater 25:2686–2692 Yu Q, Meng XG, Wang T, Li P, Ye JH (2015) Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv Funct Mater 25:2686–2692
29.
Zurück zum Zitat Kim JY, Youn DH, Kang K, Lee JS (2016) Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem Int Ed 55:10854–10858 Kim JY, Youn DH, Kang K, Lee JS (2016) Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem Int Ed 55:10854–10858
30.
Zurück zum Zitat Wang L, Fan K, Chen H, Daniel Q, Philippe B, Rensmo H, Sun L (2017) Towards efficient and robust anodes for water splitting: immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catal Today 290:73–77 Wang L, Fan K, Chen H, Daniel Q, Philippe B, Rensmo H, Sun L (2017) Towards efficient and robust anodes for water splitting: immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catal Today 290:73–77
31.
Zurück zum Zitat Ahmed AY, Ahmed MG, Kandiel TA (2016) Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 120:23415–23420 Ahmed AY, Ahmed MG, Kandiel TA (2016) Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 120:23415–23420
32.
Zurück zum Zitat Li TT, Zhao WL, Chen Y, Li FM, Wang CJ, Tian YH, Fu WF (2014) Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes. Chem Eur J 20:13957–13964 Li TT, Zhao WL, Chen Y, Li FM, Wang CJ, Tian YH, Fu WF (2014) Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes. Chem Eur J 20:13957–13964
33.
Zurück zum Zitat Li TT, Shan B, Meyer TJ (2019) Stable molecular photocathode for solar-driven CO2 reduction in aqueous solutions. ACS Energy Lett 4:629–636 Li TT, Shan B, Meyer TJ (2019) Stable molecular photocathode for solar-driven CO2 reduction in aqueous solutions. ACS Energy Lett 4:629–636
34.
Zurück zum Zitat Shan B, Vanka S, Li TT, Troian-Gautier L, Brennaman MK, Mi Z, Meyer TJ (2019) Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nat Energy 4:290–299 Shan B, Vanka S, Li TT, Troian-Gautier L, Brennaman MK, Mi Z, Meyer TJ (2019) Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nat Energy 4:290–299
35.
Zurück zum Zitat Fan K, Li F, Wang L, Daniel Q, Chen H, Gabrielsson E, Sun L (2015) Immobilization of a molecular ruthenium catalyst on hematite nanorod arrays for water oxidation with stable photocurrent. ChemSusChem 8:3242–3247 Fan K, Li F, Wang L, Daniel Q, Chen H, Gabrielsson E, Sun L (2015) Immobilization of a molecular ruthenium catalyst on hematite nanorod arrays for water oxidation with stable photocurrent. ChemSusChem 8:3242–3247
36.
Zurück zum Zitat Liu B, Li J, Wu HL, Liu WQ, Jiang X, Li ZJ, Chen B, Tung CH, Wu LZ (2016) Improved photoelectrocatalytic performance for water oxidation by earth-abundant cobalt molecular porphyrin complex-integrated BiVO4 photoanode. ACS Appl Mater Interfaces 8:18577–18583 Liu B, Li J, Wu HL, Liu WQ, Jiang X, Li ZJ, Chen B, Tung CH, Wu LZ (2016) Improved photoelectrocatalytic performance for water oxidation by earth-abundant cobalt molecular porphyrin complex-integrated BiVO4 photoanode. ACS Appl Mater Interfaces 8:18577–18583
37.
Zurück zum Zitat Li TT, Qian J, Lin J, Zheng YQ (2017) A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation. Dalton Trans 46:13020–13026 Li TT, Qian J, Lin J, Zheng YQ (2017) A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation. Dalton Trans 46:13020–13026
38.
Zurück zum Zitat Liu Y, Jiang Y, Li F, Yu F, Jiang W, Xia L (2018) Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting. J Mater Chem A 6:10761–10768 Liu Y, Jiang Y, Li F, Yu F, Jiang W, Xia L (2018) Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting. J Mater Chem A 6:10761–10768
39.
Zurück zum Zitat Joya KS, Morlanés N, Maloney E, Rodionov V, Takanabe K (2015) Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution. Chem Commun 51:13481–13484 Joya KS, Morlanés N, Maloney E, Rodionov V, Takanabe K (2015) Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution. Chem Commun 51:13481–13484
40.
Zurück zum Zitat Zeng Q, Bai J, Li J, Xia L, Huang K, Li X, Zhou B (2015) A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J Mater Chem A 3:4345–4353 Zeng Q, Bai J, Li J, Xia L, Huang K, Li X, Zhou B (2015) A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J Mater Chem A 3:4345–4353
41.
Zurück zum Zitat Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721 Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721
42.
Zurück zum Zitat Cha HG, Song J, Kim HS, Shin W, Yoon KB, Kang YS (2011) Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem Commun 47:2441–2443 Cha HG, Song J, Kim HS, Shin W, Yoon KB, Kang YS (2011) Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem Commun 47:2441–2443
43.
Zurück zum Zitat Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736 Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736
44.
Zurück zum Zitat Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J Am Chem Soc 134:16693–16700 Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J Am Chem Soc 134:16693–16700
45.
Zurück zum Zitat Wang W, Wang Z, Zhu Q, Han G, Ding C, Chen J, Shen JR, Li C (2015) Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chem Commun 51:16952–16955 Wang W, Wang Z, Zhu Q, Han G, Ding C, Chen J, Shen JR, Li C (2015) Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chem Commun 51:16952–16955
46.
Zurück zum Zitat Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4:958–964 Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4:958–964
47.
Zurück zum Zitat Huang J, Zhang Y, Ding Y (2017) Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal 7:1841–1845 Huang J, Zhang Y, Ding Y (2017) Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal 7:1841–1845
48.
Zurück zum Zitat Stracke JJ, Finke RG (2014) Distinguishing homogeneous from heterogeneous water oxidation catalysis when beginning with polyoxometalates. ACS Catal 4:909–933 Stracke JJ, Finke RG (2014) Distinguishing homogeneous from heterogeneous water oxidation catalysis when beginning with polyoxometalates. ACS Catal 4:909–933
49.
Zurück zum Zitat Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42:2338–2356 Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42:2338–2356
50.
Zurück zum Zitat Fukuzumi S, Hong D (2014) Homogeneous versus heterogeneous catalysts in water oxidation. Eur J Inorg Chem 4:645–659 Fukuzumi S, Hong D (2014) Homogeneous versus heterogeneous catalysts in water oxidation. Eur J Inorg Chem 4:645–659
51.
Zurück zum Zitat Wu X, Li F, Zhang B, Sun L (2015) Molecular complexes in water oxidation: pre-catalysts or real catalysts. J Photochem Photobiol C Photochem Rev 25:71–89 Wu X, Li F, Zhang B, Sun L (2015) Molecular complexes in water oxidation: pre-catalysts or real catalysts. J Photochem Photobiol C Photochem Rev 25:71–89
52.
Zurück zum Zitat Wang JW, Sahoo P, Lu TB (2016) Reinvestigation of water oxidation catalyzed by a dinuclear cobalt polypyridine complex: identification of CoOx as a real heterogeneous catalyst. ACS Catal 6:5062–5068 Wang JW, Sahoo P, Lu TB (2016) Reinvestigation of water oxidation catalyzed by a dinuclear cobalt polypyridine complex: identification of CoOx as a real heterogeneous catalyst. ACS Catal 6:5062–5068
Metadaten
Titel
Improved performance of photoelectrochemical water oxidation from nanostructured hematite photoanode with an immobilized molecular cobalt salophen catalyst
verfasst von
Yan Mei
Ting-Ting Li
Jinjie Qian
Hongwei Li
Yue-Qing Zheng
Publikationsdatum
22.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 27/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04971-2

Weitere Artikel der Ausgabe 27/2020

Journal of Materials Science 27/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.