Skip to main content
Erschienen in: Designs, Codes and Cryptography 2-3/2019

01.12.2018

Improved power decoding of interleaved one-point Hermitian codes

verfasst von: Sven Puchinger, Johan Rosenkilde, Irene Bouw

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2-3/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An \(h\)-interleaved one-point Hermitian code is a direct sum of \(h\) many one-point Hermitian codes, where errors are assumed to occur at the same positions in the constituent codewords. We propose a new partial decoding algorithm for these codes that can decode—under certain assumptions—an error of relative weight up to \(1-\big (\tfrac{k+g}{n}\big )^{\frac{h}{h+1}}\), where k is the dimension, n the length, and g the genus of the code. Simulation results for various parameters indicate that the new decoder achieves this maximal decoding radius with high probability. The algorithm is based on a recent generalization of improved power decoding to interleaved Reed–Solomon codes, does not require an expensive root-finding step, and improves upon the previous best decoding radius at all rates. In the special case \(h=1\), we obtain an adaption of the improved power decoding algorithm to one-point Hermitian codes, which for all simulated parameters achieves a similar observed failure probability as the Guruswami–Sudan decoder above the latter’s guaranteed decoding radius.
Fußnoten
1
Over \({\mathbb {F}}_{q^2}[X]\) we would have \(\varLambda _s=\varLambda ^s\). Over \({\mathcal {R}}\), however, \(\deg _{{\mathcal {H}}}\varLambda _s \le s|{\mathcal {E}}| + g\) while we would often have \(\deg _{{\mathcal {H}}}\varLambda ^s = s(|{\mathcal {E}}|+g)\).
 
2
For \(s=1\), the fraction of error vectors of weight \(|{\mathcal {E}}|\) with \(\deg _{{\mathcal {H}}}\varLambda _1 < |{\mathcal {E}}| + g\) is approximately \(1-\tfrac{1}{q^2}\), cf. [8, 9]. Our numerical results indicate that a similar statement holds for \(s>1\).
 
3
There are rare cases in which \(\deg _{{\mathcal {H}}}(\sum _{{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}}\in {\mathcal {I}}} \lambda _{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}}A_{{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}},{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}}}) < \tau + {|{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}}|} (n+2g-1)\) (cf. Remark 2) for which the number of equations is smaller.
 
4
This linear-algebraic condition resembles, but seems weaker than, the “(non-linear) algebraic independence assumption” in [5] for decoding interleaved RS codes.
 
5
As stated, the bound holds for arbitrary \(\ell \). However, it results in values greater whenever the number of errors s larger than the decoding radius of having parameter \(\ell = 2\).
 
6
The problem discussed in [16, Sect. V.B] consists of a system of congruences with degree constraints. Since Problem 2 involves both equations (\(1 \le {|{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}}|} < s\)) and congruences (\(s \le {|{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}}|} \le \ell \)), w.l.o.g., we first need to rewrite the equations into congruences modulo \(x^\xi \), where \(\xi \) is greater than the largest possible degree of the left- and right-hand side of the equations (i.e., \(\psi _{{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}},\kappa }\) and \(\sum _{{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}}\in {\mathcal {I}}} \sum _{\iota =0}^{q-1} \lambda _{{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}},\iota } A^{({{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}},{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}})}_{\iota ,\kappa }\)) for a solution \(\lambda _{{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}},\iota }\) and \(\psi _{{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}},\kappa }\) of minimal degree. Upper bounds on these degrees can be obtained using the solutions \({{\mathchoice{{\varvec{\displaystyle \nu }}}{{\varvec{\textstyle \nu }}}{{\varvec{\scriptstyle \nu }}}{{\varvec{\scriptscriptstyle \nu }}}}}(\varLambda _{{\mathchoice{{\varvec{\displaystyle i}}}{{\varvec{\textstyle i}}}{{\varvec{\scriptstyle i}}}{{\varvec{\scriptscriptstyle i}}}}})\) and \({{\mathchoice{{\varvec{\displaystyle \nu }}}{{\varvec{\textstyle \nu }}}{{\varvec{\scriptstyle \nu }}}{{\varvec{\scriptscriptstyle \nu }}}}}(\varPsi _{{\mathchoice{{\varvec{\displaystyle j}}}{{\varvec{\textstyle j}}}{{\varvec{\scriptstyle j}}}{{\varvec{\scriptscriptstyle j}}}}})\) (cf. Theorem 3) corresponding to the actual error locator of multiplicity s and the maximal number of errors that we can correct (cf. Sect. 5).
 
7
As pointed out in [24], an RS code over \({\mathbb {F}}_{q^{6h}}\) whose evaluation points all lie in \({\mathbb {F}}_{q^3}\) are equivalent to a 2h-interleaved RS codes over \({\mathbb {F}}_{q^3}\), i.e. can be decoded up to \(t_{\mathrm {IRS}}\). In our comparison here we therefore consider RS codes with arbitrary evaluation points for which this equivalence doesn’t hold.
 
Literatur
1.
Zurück zum Zitat Armand M.A.: Interleaved Reed–Solomon codes versus interleaved Hermitian codes. IEEE Commun. Lett. 12(10) (2008). Armand M.A.: Interleaved Reed–Solomon codes versus interleaved Hermitian codes. IEEE Commun. Lett. 12(10) (2008).
3.
Zurück zum Zitat Brander K.: Interpolation and list decoding of algebraic codes. PhD dissertation, PhD thesis, Technical University of Denmark (2010). Brander K.: Interpolation and list decoding of algebraic codes. PhD dissertation, PhD thesis, Technical University of Denmark (2010).
4.
Zurück zum Zitat Brown A., Minder L., Shokrollahi A.: Improved decoding of interleaved AG codes. In: IMA International Conference on Cryptography and Coding, pp. 37–46. Springer, Berlin (2005). Brown A., Minder L., Shokrollahi A.: Improved decoding of interleaved AG codes. In: IMA International Conference on Cryptography and Coding, pp. 37–46. Springer, Berlin (2005).
6.
Zurück zum Zitat Feng G.-L., Tzeng K.K.: A generalized euclidean algorithm for multisequence shift-register synthesis. IEEE Trans. Inf. Theory 35(3), 584–594 (1989).MathSciNetCrossRefMATH Feng G.-L., Tzeng K.K.: A generalized euclidean algorithm for multisequence shift-register synthesis. IEEE Trans. Inf. Theory 35(3), 584–594 (1989).MathSciNetCrossRefMATH
7.
Zurück zum Zitat Guruswami V., Sudan M.: Improved decoding of Reed–Solomon and algebraic-geometric codes. In: IEEE Annual Symposium on Foundations of Computer Science, pp. 28–37 (1998). Guruswami V., Sudan M.: Improved decoding of Reed–Solomon and algebraic-geometric codes. In: IEEE Annual Symposium on Foundations of Computer Science, pp. 28–37 (1998).
8.
Zurück zum Zitat Hansen J.P.: Dependent rational points on curves over finite fields-Lefschetz theorems and exponential sums. Electron. Notes Discret. Math. 6, 297–309 (2001).MathSciNetCrossRef Hansen J.P.: Dependent rational points on curves over finite fields-Lefschetz theorems and exponential sums. Electron. Notes Discret. Math. 6, 297–309 (2001).MathSciNetCrossRef
9.
Zurück zum Zitat Jensen H.E., Nielsen R.R., Høholdt T.: Performance analysis of a decoding algorithm for algebraic geometry codes. In: IEEE International Symposium on Information Theory (1998). Jensen H.E., Nielsen R.R., Høholdt T.: Performance analysis of a decoding algorithm for algebraic geometry codes. In: IEEE International Symposium on Information Theory (1998).
10.
Zurück zum Zitat Kampf S.: Decoding Hermitian codes: an engineering approach. PhD dissertation, Universität Ulm (2012). Kampf S.: Decoding Hermitian codes: an engineering approach. PhD dissertation, Universität Ulm (2012).
11.
Zurück zum Zitat Kampf S.: Bounds on collaborative decoding of interleaved Hermitian codes and virtual extension. Des. Codes Cryptogr. 70(1–2), 9–25 (2014).MathSciNetCrossRefMATH Kampf S.: Bounds on collaborative decoding of interleaved Hermitian codes and virtual extension. Des. Codes Cryptogr. 70(1–2), 9–25 (2014).MathSciNetCrossRefMATH
12.
Zurück zum Zitat Krachkovsky V.Y., Lee Y.X.: Decoding for iterative Reed–Solomon coding schemes. IEEE Trans. Magn. 33(5), 2740–2742 (1997).CrossRef Krachkovsky V.Y., Lee Y.X.: Decoding for iterative Reed–Solomon coding schemes. IEEE Trans. Magn. 33(5), 2740–2742 (1997).CrossRef
13.
Zurück zum Zitat Lee K., O’Sullivan M.E.: List decoding of Hermitian codes using Gröbner bases. J. Symb. Comput. 44(12), 1662–1675 (2009).CrossRefMATH Lee K., O’Sullivan M.E.: List decoding of Hermitian codes using Gröbner bases. J. Symb. Comput. 44(12), 1662–1675 (2009).CrossRefMATH
14.
Zurück zum Zitat Lee K., Bras-Amoros M., O’Sullivan M.: Unique decoding of general AG codes. IEEE Trans. Inf. Theory 60(4), 2038–2053 (2014).MathSciNetCrossRefMATH Lee K., Bras-Amoros M., O’Sullivan M.: Unique decoding of general AG codes. IEEE Trans. Inf. Theory 60(4), 2038–2053 (2014).MathSciNetCrossRefMATH
16.
Zurück zum Zitat Nielsen J.S.R., Beelen P.: Sub-quadratic decoding of one-point Hermitian codes. IEEE Trans. Inf. Theory 61(6), 3225–3240 (2015).MathSciNetCrossRefMATH Nielsen J.S.R., Beelen P.: Sub-quadratic decoding of one-point Hermitian codes. IEEE Trans. Inf. Theory 61(6), 3225–3240 (2015).MathSciNetCrossRefMATH
17.
Zurück zum Zitat Parvaresh F., Vardy A.: Multivariate interpolation decoding beyond the Guruswami–Sudan radius. In: Proceedings of the 42nd Allerton Conference on Communication, Control and Computing (2004). Parvaresh F., Vardy A.: Multivariate interpolation decoding beyond the Guruswami–Sudan radius. In: Proceedings of the 42nd Allerton Conference on Communication, Control and Computing (2004).
18.
Zurück zum Zitat Puchinger S., Bouw I., Rosenkilde né Nielsen J.: Improved power decoding of one-point Hermitian codes. In: International Workshop on Coding and Cryptography (2017). arXiv:1703.07982. Puchinger S., Bouw I., Rosenkilde né Nielsen J.: Improved power decoding of one-point Hermitian codes. In: International Workshop on Coding and Cryptography (2017). arXiv:​1703.​07982.
19.
Zurück zum Zitat Puchinger S., Rosenkilde né Nielsen J.: Decoding of interleaved Reed–Solomon codes using improved power decoding. In: IEEE International Symposium on Information Theory (2017). Puchinger S., Rosenkilde né Nielsen J.: Decoding of interleaved Reed–Solomon codes using improved power decoding. In: IEEE International Symposium on Information Theory (2017).
20.
Zurück zum Zitat Rosenkilde J.: Power decoding Reed–Solomon codes up to the Johnson radius. Accepted for: Advances in Mathematics of Communications (2018). arXiv:1505.02111. Rosenkilde J.: Power decoding Reed–Solomon codes up to the Johnson radius. Accepted for: Advances in Mathematics of Communications (2018). arXiv:​1505.​02111.
21.
Zurück zum Zitat Schmidt G., Sidorenko V., Bossert M.: Enhancing the correcting radius of interleaved Reed–Solomon decoding using syndrome extension techniques. In: IEEE ISIT, pp. 1341–1345 (2007). Schmidt G., Sidorenko V., Bossert M.: Enhancing the correcting radius of interleaved Reed–Solomon decoding using syndrome extension techniques. In: IEEE ISIT, pp. 1341–1345 (2007).
22.
Zurück zum Zitat Schmidt G., Sidorenko V.R., Bossert M.: Collaborative decoding of interleaved Reed–Solomon codes and concatenated code designs. IEEE Trans. Inf. Theory 55(7), 2991–3012 (2009).MathSciNetCrossRefMATH Schmidt G., Sidorenko V.R., Bossert M.: Collaborative decoding of interleaved Reed–Solomon codes and concatenated code designs. IEEE Trans. Inf. Theory 55(7), 2991–3012 (2009).MathSciNetCrossRefMATH
23.
Zurück zum Zitat Schmidt G., Sidorenko V.R., Bossert M.: Syndrome decoding of Reed–Solomon codes beyond half the minimum distance based on shift-register synthesis. IEEE Trans. Inf. Theory 56(10), 5245–5252 (2010).MathSciNetCrossRefMATH Schmidt G., Sidorenko V.R., Bossert M.: Syndrome decoding of Reed–Solomon codes beyond half the minimum distance based on shift-register synthesis. IEEE Trans. Inf. Theory 56(10), 5245–5252 (2010).MathSciNetCrossRefMATH
24.
Zurück zum Zitat Sidorenko V., Schmidt G., Bossert M.: Decoding punctured Reed–Solomon codes up to the singleton bound. In: International ITG Conference on Source and Channel Coding, pp. 1–6 (2008). Sidorenko V., Schmidt G., Bossert M.: Decoding punctured Reed–Solomon codes up to the singleton bound. In: International ITG Conference on Source and Channel Coding, pp. 1–6 (2008).
26.
Zurück zum Zitat Wachter-Zeh A., Zeh A., Bossert M.: Decoding interleaved Reed–Solomon codes beyond their joint error-correcting capability. Des. Codes Cryptogr. 71(2), 261–281 (2014).MathSciNetCrossRefMATH Wachter-Zeh A., Zeh A., Bossert M.: Decoding interleaved Reed–Solomon codes beyond their joint error-correcting capability. Des. Codes Cryptogr. 71(2), 261–281 (2014).MathSciNetCrossRefMATH
27.
Metadaten
Titel
Improved power decoding of interleaved one-point Hermitian codes
verfasst von
Sven Puchinger
Johan Rosenkilde
Irene Bouw
Publikationsdatum
01.12.2018
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2-3/2019
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-018-0577-z

Weitere Artikel der Ausgabe 2-3/2019

Designs, Codes and Cryptography 2-3/2019 Zur Ausgabe

Premium Partner