Skip to main content
Erschienen in: Journal of Polymer Research 3/2021

01.03.2021 | ORIGINAL PAPER

Improvement in physico-mechanical and structural properties of rigid polyurethane foam composites by the addition of sugar beet pulp as a reactive filler

verfasst von: Emre Akdogan, Murat Erdem

Erschienen in: Journal of Polymer Research | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Green polymeric composites, which are obtained from cheap, renewable, and environmentally friendly natural resources that can replace petrochemicals, have gained great attention from the researchers in recent years. To that end, we aimed at preparing a type of bio-based rigid polyurethane foam (RPUF) composites which incorporated sugar beet pulp (SBP) particles as a reactive filler. The obtained composite foams were evaluated through the effect of the increasing amount of SBP particles on the microstructure, thermal and mechanical properties. To eliminate the density effect of foams on the physico-mechanical properties, the foams were obtained such that their densities were kept at 37 \(\pm\)0.5 kg.m−3. Besides, the heat transfer mechanism of foams in terms of radiative transfer, conduction through polymer matrix and gas phase were analyzed by using a predictive model for the efficient thermal conductivity. Based on FTIR results, the functional groups on SBP have a tremendous tendency to react with isocyanates in the presence of a catalyst. The introduction of 3 wt% SBP according to the total mass provided high compressive strength (166 kPa), low thermal conductivity value (20.46 mW/m.K) and excellent dimensional stability in harsh conditions. SEM images show that the distribution of cells was uniform and any broken cells were not detected in all composite foams. The addition of SBP particles generally decreases the radiative contributions and enhances the contribution of conduction through the polymer matrix. It is clear that for all foams, the conduction through gas-phase gave the biggest contribution to the total thermal conductivity. Thermogravimetric analysis data displayed that the inclusion of SBP in RPUF slightly improved the thermal stability of RPUF composites. All results indicate that SBP waste, which is the most produced by-agriproduct in sugar refining industry, is an advantageous natural filler in many aspects for preparing RPUF. The obtained environmentally friendly RPUF composites have all of the properties needed to meet the demand for thermal insulation engineering materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anastas PT, Warner JC (1998) Green chemistry. Frontiers 640 Anastas PT, Warner JC (1998) Green chemistry. Frontiers 640
2.
Zurück zum Zitat Părpăriţă E, Nistor MT, Popescu M-C, Vasile C (2014) TG/FT–IR/MS study on thermal decomposition of polypropylene/biomass composites. Polym Degrad Stab 109:13–20CrossRef Părpăriţă E, Nistor MT, Popescu M-C, Vasile C (2014) TG/FT–IR/MS study on thermal decomposition of polypropylene/biomass composites. Polym Degrad Stab 109:13–20CrossRef
3.
Zurück zum Zitat Guo A, Zhao J, Li J, Li F, Guan K (2015) Forming parameters optimisation of biomass cushion packaging material by orthogonal test. Mater Res Innov 19(sup5):S5–521 Guo A, Zhao J, Li J, Li F, Guan K (2015) Forming parameters optimisation of biomass cushion packaging material by orthogonal test. Mater Res Innov 19(sup5):S5–521
4.
Zurück zum Zitat Wang J, Zhao D, Liu Z, Chen H, Zhou Y, Zhou Y, Zhu B (2020) Effects of biomass diatom frustule on structure and properties of polyurethane elastomer. J Appl Polym Sci 137(10):48452CrossRef Wang J, Zhao D, Liu Z, Chen H, Zhou Y, Zhou Y, Zhu B (2020) Effects of biomass diatom frustule on structure and properties of polyurethane elastomer. J Appl Polym Sci 137(10):48452CrossRef
5.
Zurück zum Zitat Xue B-L, Wen J-L, Sun R-C (2014) Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Chem Eng 2(6):1474–1480CrossRef Xue B-L, Wen J-L, Sun R-C (2014) Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Chem Eng 2(6):1474–1480CrossRef
6.
Zurück zum Zitat Członka S, Bertino MF, Strzelec K, Strąkowska A, Masłowski M (2018) Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polym Test 69:225–237CrossRef Członka S, Bertino MF, Strzelec K, Strąkowska A, Masłowski M (2018) Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polym Test 69:225–237CrossRef
7.
Zurück zum Zitat De Luca BF, Santillo C, Verdolotti L, Campaner P, Minigher A, Boggioni L, Losio S, Coccia F, Iannace S, Lama GC (2020) Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties. Mater 13(1):211CrossRef De Luca BF, Santillo C, Verdolotti L, Campaner P, Minigher A, Boggioni L, Losio S, Coccia F, Iannace S, Lama GC (2020) Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties. Mater 13(1):211CrossRef
8.
Zurück zum Zitat Gómez-Rojo R, Alameda L, Rodríguez Á, Calderón V, Gutiérrez-González S (2019) Characterization of polyurethane foam waste for reuse in eco-efficient building materials. Polymers 11(2):359PubMedCentralCrossRef Gómez-Rojo R, Alameda L, Rodríguez Á, Calderón V, Gutiérrez-González S (2019) Characterization of polyurethane foam waste for reuse in eco-efficient building materials. Polymers 11(2):359PubMedCentralCrossRef
9.
Zurück zum Zitat Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482CrossRef Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482CrossRef
10.
Zurück zum Zitat Akdogan E, Erdem M, Ureyen ME, Kaya M (2020) Synergistic effects of expandable graphite and ammonium pentaborate octahydrate on the flame-retardant, thermal insulation, and mechanical properties of rigid polyurethane foam. Polym Compos 41(5):1749–1762CrossRef Akdogan E, Erdem M, Ureyen ME, Kaya M (2020) Synergistic effects of expandable graphite and ammonium pentaborate octahydrate on the flame-retardant, thermal insulation, and mechanical properties of rigid polyurethane foam. Polym Compos 41(5):1749–1762CrossRef
11.
Zurück zum Zitat Lim H, Kim S, Kim B (2008) Effects of silicon surfactant in rigid polyurethane foams. Express Polym Lett 2(3):194–200CrossRef Lim H, Kim S, Kim B (2008) Effects of silicon surfactant in rigid polyurethane foams. Express Polym Lett 2(3):194–200CrossRef
12.
Zurück zum Zitat Członka S, Strąkowska A, Strzelec K, Adamus-Włodarczyk A, Kairytė A, Vaitkus S (2019) Composites of rigid polyurethane foams reinforced with POSS. Polymers 11(2):336PubMedCentralCrossRef Członka S, Strąkowska A, Strzelec K, Adamus-Włodarczyk A, Kairytė A, Vaitkus S (2019) Composites of rigid polyurethane foams reinforced with POSS. Polymers 11(2):336PubMedCentralCrossRef
13.
Zurück zum Zitat Akdogan E, Erdem M, Ureyen ME, Kaya M (2020b) Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties. J Appl Polym Sci 137(1):47611CrossRef Akdogan E, Erdem M, Ureyen ME, Kaya M (2020b) Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties. J Appl Polym Sci 137(1):47611CrossRef
14.
Zurück zum Zitat Głowińska E, Datta J (2015) Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose 22(4):2471–2481CrossRef Głowińska E, Datta J (2015) Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose 22(4):2471–2481CrossRef
15.
Zurück zum Zitat Członka S, Bertino MF, Strzelec K (2018) Rigid polyurethane foams reinforced with industrial potato protein. Polym Test 68:135–145CrossRef Członka S, Bertino MF, Strzelec K (2018) Rigid polyurethane foams reinforced with industrial potato protein. Polym Test 68:135–145CrossRef
16.
Zurück zum Zitat Zhang S, Xiang A, Tian H, Rajulu AV (2018) Water-blown castor oil-based polyurethane foams with soy protein as a reactive reinforcing filler. J Polym Environ 26(1):15–22CrossRef Zhang S, Xiang A, Tian H, Rajulu AV (2018) Water-blown castor oil-based polyurethane foams with soy protein as a reactive reinforcing filler. J Polym Environ 26(1):15–22CrossRef
17.
Zurück zum Zitat Kurańska M, Barczewski M, Uram K, Lewandowski K, Prociak A, Michałowski S (2019) Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications. Polym Test 76:90–100CrossRef Kurańska M, Barczewski M, Uram K, Lewandowski K, Prociak A, Michałowski S (2019) Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications. Polym Test 76:90–100CrossRef
18.
Zurück zum Zitat Yang W, Feng Y, He H, Yang Z (2018) Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Mater 11(7):1160CrossRef Yang W, Feng Y, He H, Yang Z (2018) Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Mater 11(7):1160CrossRef
19.
Zurück zum Zitat Babaei B, Abdollahian-Noghabi M, Noshad H, Vahedi S (2012) Optimization of cellulose extraction from sugar beet pulp. J Sugar Beet 27(2):45–50 Babaei B, Abdollahian-Noghabi M, Noshad H, Vahedi S (2012) Optimization of cellulose extraction from sugar beet pulp. J Sugar Beet 27(2):45–50
20.
Zurück zum Zitat Nuhanović M, Grebo M, Draganović S, Memić M, Smječanin N (2019) Uranium (VI) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 322(3):2065–2078CrossRef Nuhanović M, Grebo M, Draganović S, Memić M, Smječanin N (2019) Uranium (VI) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 322(3):2065–2078CrossRef
21.
Zurück zum Zitat Aksu Z, İşoğlu İA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40(9):3031–3044CrossRef Aksu Z, İşoğlu İA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40(9):3031–3044CrossRef
22.
Zurück zum Zitat Brachi P (2020) Synthesis of carbon dots (CDs) through the fluidized bed thermal treatment of residual biomass assisted by γ-alumina. Appl Catal B Environ 263:118361CrossRef Brachi P (2020) Synthesis of carbon dots (CDs) through the fluidized bed thermal treatment of residual biomass assisted by γ-alumina. Appl Catal B Environ 263:118361CrossRef
23.
Zurück zum Zitat Tomita H, Okazaki F, Tamaru Y (2019) Biomethane production from sugar beet pulp under cocultivation with Clostridium cellulovorans and methanogens. AMB Express 9(1):28PubMedPubMedCentralCrossRef Tomita H, Okazaki F, Tamaru Y (2019) Biomethane production from sugar beet pulp under cocultivation with Clostridium cellulovorans and methanogens. AMB Express 9(1):28PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Selim S, Hussein E (2020) Production performance, egg quality, blood biochemical constituents, egg yolk lipid profile and lipid peroxidation of laying hens fed sugar beet pulp. Food Chem 310:125864PubMedCrossRef Selim S, Hussein E (2020) Production performance, egg quality, blood biochemical constituents, egg yolk lipid profile and lipid peroxidation of laying hens fed sugar beet pulp. Food Chem 310:125864PubMedCrossRef
25.
Zurück zum Zitat Shang Q, Liu H, Liu S, He T, Piao X (2019) Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J Anim Sci 97(12):4922–4933PubMedPubMedCentralCrossRef Shang Q, Liu H, Liu S, He T, Piao X (2019) Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J Anim Sci 97(12):4922–4933PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Torbica A, Škrobot D, Hajnal EJ, Belović M, Zhang N (2019) Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 114:108414CrossRef Torbica A, Škrobot D, Hajnal EJ, Belović M, Zhang N (2019) Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 114:108414CrossRef
27.
Zurück zum Zitat Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Morphology and properties of thermoplastic sugar beet pulp and poly (butylene adipate-co-terepthalate) blends. Ind Eng Chem Res 50(24):13859–13865CrossRef Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Morphology and properties of thermoplastic sugar beet pulp and poly (butylene adipate-co-terepthalate) blends. Ind Eng Chem Res 50(24):13859–13865CrossRef
28.
Zurück zum Zitat Chen F, Liu L, Cooke PH, Hicks KB, Zhang J (2008) Performance enhancement of poly (lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Ind Eng Chem Res 47(22):8667–8675CrossRef Chen F, Liu L, Cooke PH, Hicks KB, Zhang J (2008) Performance enhancement of poly (lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Ind Eng Chem Res 47(22):8667–8675CrossRef
29.
Zurück zum Zitat Finkenstadt VL, Liu L, Willett J (2007) Evaluation of poly (lactic acid) and sugar beet pulp green composites. J Polym Environ 15(1):1–6CrossRef Finkenstadt VL, Liu L, Willett J (2007) Evaluation of poly (lactic acid) and sugar beet pulp green composites. J Polym Environ 15(1):1–6CrossRef
30.
Zurück zum Zitat Castro L, Blázquez ML, Muñoz JA, González F, García-Balboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46(5):1076–1082CrossRef Castro L, Blázquez ML, Muñoz JA, González F, García-Balboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46(5):1076–1082CrossRef
31.
Zurück zum Zitat Harifi-Mood AR, Hadavand-Mirzaie F (2015) Adsorption of Basic violet 16 from aqueous solutions by waste sugar beet pulp: kinetic, thermodynamic, and equilibrium isotherm studies. Chem Spec Bioavailab 27(1):8–14CrossRef Harifi-Mood AR, Hadavand-Mirzaie F (2015) Adsorption of Basic violet 16 from aqueous solutions by waste sugar beet pulp: kinetic, thermodynamic, and equilibrium isotherm studies. Chem Spec Bioavailab 27(1):8–14CrossRef
32.
Zurück zum Zitat Huang G, Chen F (2019) Reaction of jute fiber with isocyanate component for the production of plant fiber-reinforced polyurethane composites. Cellulose 26(12):7297–7308CrossRef Huang G, Chen F (2019) Reaction of jute fiber with isocyanate component for the production of plant fiber-reinforced polyurethane composites. Cellulose 26(12):7297–7308CrossRef
33.
Zurück zum Zitat Członka S, Sienkiewicz N, Strąkowska A, Strzelec K (2018) Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polym Test 72:32–45CrossRef Członka S, Sienkiewicz N, Strąkowska A, Strzelec K (2018) Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polym Test 72:32–45CrossRef
34.
Zurück zum Zitat Burgaz E, Kendirlioglu C (2019) Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polym Test 77:105930CrossRef Burgaz E, Kendirlioglu C (2019) Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polym Test 77:105930CrossRef
35.
Zurück zum Zitat Hatchett DW, Kinyanjui JM, Sapochak L (2007) FTIR analysis of chemical gradients in thermally processed molded polyurethane foam. J Cel Plast 43(3):183–196CrossRef Hatchett DW, Kinyanjui JM, Sapochak L (2007) FTIR analysis of chemical gradients in thermally processed molded polyurethane foam. J Cel Plast 43(3):183–196CrossRef
36.
Zurück zum Zitat Kuan HC, Ma CCM, Chuang WP, Su HY (2005) Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites. J Polym Sci Pol Phys 43(1):1–12CrossRef Kuan HC, Ma CCM, Chuang WP, Su HY (2005) Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites. J Polym Sci Pol Phys 43(1):1–12CrossRef
37.
Zurück zum Zitat Akkoyun M, Suvaci E (2016) Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams. J Appl Polym Sci 133(28) Akkoyun M, Suvaci E (2016) Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams. J Appl Polym Sci 133(28)
38.
Zurück zum Zitat Fan H, Tekeei A, Suppes GJ, Hsieh FH (2013) Rigid polyurethane foams made from high viscosity soy-polyols. J Appl Polym Sci 127(3):1623–1629CrossRef Fan H, Tekeei A, Suppes GJ, Hsieh FH (2013) Rigid polyurethane foams made from high viscosity soy-polyols. J Appl Polym Sci 127(3):1623–1629CrossRef
39.
Zurück zum Zitat Saha M, Kabir ME, Jeelani S (2008) Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater Sci Eng A 479(1–2):213–222CrossRef Saha M, Kabir ME, Jeelani S (2008) Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater Sci Eng A 479(1–2):213–222CrossRef
40.
Zurück zum Zitat Modesti M, Lorenzetti A, Besco S (2007) Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams. Polym Eng Sci 47(9):1351–1358CrossRef Modesti M, Lorenzetti A, Besco S (2007) Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams. Polym Eng Sci 47(9):1351–1358CrossRef
41.
Zurück zum Zitat Zhang L, Zhang M, Zhou Y, Hu L (2013) The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab 98(12):2784–2794CrossRef Zhang L, Zhang M, Zhou Y, Hu L (2013) The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab 98(12):2784–2794CrossRef
42.
Zurück zum Zitat Xu Z, Tang X, Gu A, Fang Z (2007) Novel preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites. J Appl Polym Sci 106(1):439–447CrossRef Xu Z, Tang X, Gu A, Fang Z (2007) Novel preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites. J Appl Polym Sci 106(1):439–447CrossRef
43.
Zurück zum Zitat Hebda E, Ozimek J, Raftopoulos KN, Michałowski S, Pielichowski J, Jancia M, Pielichowski K (2015) Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym Advan Technol 26(8):932–940CrossRef Hebda E, Ozimek J, Raftopoulos KN, Michałowski S, Pielichowski J, Jancia M, Pielichowski K (2015) Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym Advan Technol 26(8):932–940CrossRef
44.
Zurück zum Zitat Mondal P, Khakhar D (2007) Rigid polyurethane–clay nanocomposite foams: preparation and properties. J Appl Polym Sci 103(5):2802–2809CrossRef Mondal P, Khakhar D (2007) Rigid polyurethane–clay nanocomposite foams: preparation and properties. J Appl Polym Sci 103(5):2802–2809CrossRef
45.
Zurück zum Zitat Santiago-Calvo M, Tirado-Mediavilla J, Rauhe JC, Jensen LR, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez MÁ (2018) Evaluation of the thermal conductivity and mechanical properties of water blown polyurethane rigid foams reinforced with carbon nanofibers. Eur Polym J 108:98–106CrossRef Santiago-Calvo M, Tirado-Mediavilla J, Rauhe JC, Jensen LR, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez MÁ (2018) Evaluation of the thermal conductivity and mechanical properties of water blown polyurethane rigid foams reinforced with carbon nanofibers. Eur Polym J 108:98–106CrossRef
46.
Zurück zum Zitat Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez MÁ (2016) Rigid polyurethane foams with infused nanoclays: Relationship between cellular structure and thermal conductivity. Eur Polym J 80:1–15CrossRef Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez MÁ (2016) Rigid polyurethane foams with infused nanoclays: Relationship between cellular structure and thermal conductivity. Eur Polym J 80:1–15CrossRef
47.
Zurück zum Zitat Zhang H, Fang W-Z, Li Y-M, Tao W-Q (2017) Experimental study of the thermal conductivity of polyurethane foams. Appl Therm Eng 115:528–538CrossRef Zhang H, Fang W-Z, Li Y-M, Tao W-Q (2017) Experimental study of the thermal conductivity of polyurethane foams. Appl Therm Eng 115:528–538CrossRef
48.
Zurück zum Zitat Kang JW, Kim JM, Kim MS, Kim YH, Kim WN, Jang W, Shin DS (2009) Effects of nucleating agents on the morphological, mechanical and thermal insulating properties of rigid polyurethane poams. Macromol Res 17(11):856–862CrossRef Kang JW, Kim JM, Kim MS, Kim YH, Kim WN, Jang W, Shin DS (2009) Effects of nucleating agents on the morphological, mechanical and thermal insulating properties of rigid polyurethane poams. Macromol Res 17(11):856–862CrossRef
49.
Zurück zum Zitat Lee ST, Ramesh NS (2004) Polymeric Foams: Mechanisms and Materials. CRC Press, Boca RatonCrossRef Lee ST, Ramesh NS (2004) Polymeric Foams: Mechanisms and Materials. CRC Press, Boca RatonCrossRef
50.
Zurück zum Zitat Glicksman L, Hilyard N, Cunningham A (1994) Low density cellular plastics: physical basis of behaviour. Chapman & Hall, London Glicksman L, Hilyard N, Cunningham A (1994) Low density cellular plastics: physical basis of behaviour. Chapman & Hall, London
51.
Zurück zum Zitat Biedermann A, Kudoke C, Merten A, Minogue E, Rotermund U, Ebert H-P, Heinemann U, Fricke J, Seifert H (2001) Analysis of heat transfer mechanisms in polyurethane rigid foam. J Cell Plast 37(6):467–483CrossRef Biedermann A, Kudoke C, Merten A, Minogue E, Rotermund U, Ebert H-P, Heinemann U, Fricke J, Seifert H (2001) Analysis of heat transfer mechanisms in polyurethane rigid foam. J Cell Plast 37(6):467–483CrossRef
52.
Zurück zum Zitat Tseng C-j, Yamaguchi M, Ohmori T (1997) Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics 37(6):305–312CrossRef Tseng C-j, Yamaguchi M, Ohmori T (1997) Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics 37(6):305–312CrossRef
53.
Zurück zum Zitat Schuetz M, Glicksman LR (1984) A basic study of heat transfer through foam insulation. J Cell Plast 20(2):114–121CrossRef Schuetz M, Glicksman LR (1984) A basic study of heat transfer through foam insulation. J Cell Plast 20(2):114–121CrossRef
54.
Zurück zum Zitat Kabakci E, Sayer G, Suvaci E, Uysal O, Güler İ, Kaya M (2017) Processing‐structure‐property relationship in rigid polyurethane foams. J Appl Polym Sci 134(21) Kabakci E, Sayer G, Suvaci E, Uysal O, Güler İ, Kaya M (2017) Processing‐structure‐property relationship in rigid polyurethane foams. J Appl Polym Sci 134(21)
55.
Zurück zum Zitat Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ (2011) Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams. J Appl Polym Sci 120(5):3014–3019CrossRef Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ (2011) Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams. J Appl Polym Sci 120(5):3014–3019CrossRef
56.
Zurück zum Zitat Choi SW, Jung JM, Yoo HM, Kim SH, Lee WI (2018) Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. J Therm Anal Calorim 132(2):1253–1262CrossRef Choi SW, Jung JM, Yoo HM, Kim SH, Lee WI (2018) Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. J Therm Anal Calorim 132(2):1253–1262CrossRef
57.
Zurück zum Zitat Hamilton AR, Thomsen OT, Madaleno LA, Jensen LR, Rauhe JCM, Pyrz R (2013) Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams. Compos Sci Technol 87:210–217CrossRef Hamilton AR, Thomsen OT, Madaleno LA, Jensen LR, Rauhe JCM, Pyrz R (2013) Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams. Compos Sci Technol 87:210–217CrossRef
58.
Zurück zum Zitat Thirumal M, Khastgir D, Singha NK, Manjunath B, Naik Y (2007) Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cell Polym 26(4):245–259CrossRef Thirumal M, Khastgir D, Singha NK, Manjunath B, Naik Y (2007) Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cell Polym 26(4):245–259CrossRef
59.
Zurück zum Zitat Zhu M, Bandyopadhyay-Ghosh S, Khazabi M, Cai H, Correa C, Sain M (2012) Reinforcement of soy polyol-based rigid polyurethane foams by cellulose microfibers and nanoclays. J Appl Polym Sci 124(6):4702–4710 Zhu M, Bandyopadhyay-Ghosh S, Khazabi M, Cai H, Correa C, Sain M (2012) Reinforcement of soy polyol-based rigid polyurethane foams by cellulose microfibers and nanoclays. J Appl Polym Sci 124(6):4702–4710
60.
Zurück zum Zitat Cao X, Lee LJ, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46(3):775–783CrossRef Cao X, Lee LJ, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46(3):775–783CrossRef
61.
Zurück zum Zitat Septevani AA, Evans DA, Chaleat C, Martin DJ, Annamalai PK (2015) A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind Crop Prod 66:16–26CrossRef Septevani AA, Evans DA, Chaleat C, Martin DJ, Annamalai PK (2015) A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind Crop Prod 66:16–26CrossRef
62.
Zurück zum Zitat Badri K, Ahmad S, Zakaria S (2001) Production of a high-functionality RBD palm kernel oil-based polyester polyol. J Appl Polym Sci 81(2):384–389CrossRef Badri K, Ahmad S, Zakaria S (2001) Production of a high-functionality RBD palm kernel oil-based polyester polyol. J Appl Polym Sci 81(2):384–389CrossRef
63.
Zurück zum Zitat Septevani AA, Evans DA, Annamalai PK, Martin DJ (2017) The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Ind Crop Prod 107:114–121CrossRef Septevani AA, Evans DA, Annamalai PK, Martin DJ (2017) The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Ind Crop Prod 107:114–121CrossRef
64.
Zurück zum Zitat Li X, Cao H, Zhang Y (2006) Structures and physical properties of rigid polyurethane foams with water as the sole blowing agent. Sci China Ser B 49(4):363–370CrossRef Li X, Cao H, Zhang Y (2006) Structures and physical properties of rigid polyurethane foams with water as the sole blowing agent. Sci China Ser B 49(4):363–370CrossRef
65.
Zurück zum Zitat Sienkiewicz N, Członka S, Kairyte A, Vaitkus S (2019) Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polym Test 79:106046CrossRef Sienkiewicz N, Członka S, Kairyte A, Vaitkus S (2019) Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polym Test 79:106046CrossRef
66.
Zurück zum Zitat Sidi-Yacoub B, Oudghiri F, Belkadi M, Rodríguez-Barroso R (2019) Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Therm Anal Calorim 138(2):1801–1809CrossRef Sidi-Yacoub B, Oudghiri F, Belkadi M, Rodríguez-Barroso R (2019) Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Therm Anal Calorim 138(2):1801–1809CrossRef
67.
Zurück zum Zitat Tang Z, Maroto-Valer MM, Andrésen JM, Miller JW, Listemann ML, McDaniel PL, Morita DK, Furlan WR (2002) Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymers 43(24):6471–6479CrossRef Tang Z, Maroto-Valer MM, Andrésen JM, Miller JW, Listemann ML, McDaniel PL, Morita DK, Furlan WR (2002) Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymers 43(24):6471–6479CrossRef
68.
Zurück zum Zitat Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98(12):2687–2696CrossRef Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98(12):2687–2696CrossRef
69.
Zurück zum Zitat Chattopadhyay D, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133CrossRef Chattopadhyay D, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133CrossRef
70.
Zurück zum Zitat Zhang Q, Lin X, Chen W, Zhang H, Han D (2020) Modification of Rigid Polyurethane Foams with the Addition of Nano-SiO2 or Lignocellulosic Biomass. Polymers 12(1):107PubMedCentralCrossRef Zhang Q, Lin X, Chen W, Zhang H, Han D (2020) Modification of Rigid Polyurethane Foams with the Addition of Nano-SiO2 or Lignocellulosic Biomass. Polymers 12(1):107PubMedCentralCrossRef
71.
Zurück zum Zitat Silva M, Takahashi J, Chaussy D, Belgacem M, Silva G (2010) Composites of rigid polyurethane foam and cellulose fiber residue. J Appl Polym Sci 117(6):3665–3672 Silva M, Takahashi J, Chaussy D, Belgacem M, Silva G (2010) Composites of rigid polyurethane foam and cellulose fiber residue. J Appl Polym Sci 117(6):3665–3672
Metadaten
Titel
Improvement in physico-mechanical and structural properties of rigid polyurethane foam composites by the addition of sugar beet pulp as a reactive filler
verfasst von
Emre Akdogan
Murat Erdem
Publikationsdatum
01.03.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 3/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02445-w

Weitere Artikel der Ausgabe 3/2021

Journal of Polymer Research 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.