Skip to main content
Erschienen in: Water Resources Management 2/2016

01.01.2016

Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques

verfasst von: Aman Mohammad Kalteh

Erschienen in: Water Resources Management | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly reliable forecasting of streamflow is essential in many water resources planning and management activities. Recently, least squares support vector machine (LSSVM) method has gained much attention in streamflow forecasting due to its ability to model complex non-linear relationships. However, LSSVM method belongs to black-box models, that is, this method is primarily based on measured data. In this paper, we attempt to improve the performance of LSSVM method from the aspect of data preprocessing by singular spectrum analysis (SSA) and discrete wavelet analysis (DWA). Kharjeguil and Ponel stations from Northern Iran are investigated with monthly streamflow data. The root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R) and coefficient of efficiency (CE) statistics are used as comparing criteria. The results indicate that both SSA and DWA can significantly improve the performance of forecasting model. However, DWA seems to be superior to SSA and able to estimate peak streamflow values more accurately. Thus, it can be recommended that LSSVM method coupled with DWA is more promising.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40CrossRef Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40CrossRef
Zurück zum Zitat Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91CrossRef Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91CrossRef
Zurück zum Zitat Al-geelani NA, Piah MAM, Shaddad RQ (2012) Characterization of acoustic signals due to surface discharges on H.V. glass insulators using wavelet radial basis function neural networks. Appl Soft Comput 12:1239–11246CrossRef Al-geelani NA, Piah MAM, Shaddad RQ (2012) Characterization of acoustic signals due to surface discharges on H.V. glass insulators using wavelet radial basis function neural networks. Appl Soft Comput 12:1239–11246CrossRef
Zurück zum Zitat Bhagwat PP, Maity R (2012) Multistep-ahead river flow prediction using LS-SVR at daily scale. J Water Resour Prot 4:528–539CrossRef Bhagwat PP, Maity R (2012) Multistep-ahead river flow prediction using LS-SVR at daily scale. J Water Resour Prot 4:528–539CrossRef
Zurück zum Zitat Cimen M (2008) Estimation of daily suspended sediments using support vector machines. Hydrolog Sci J 53(3):656–666CrossRef Cimen M (2008) Estimation of daily suspended sediments using support vector machines. Hydrolog Sci J 53(3):656–666CrossRef
Zurück zum Zitat Cimen M, Kisi O (2009) Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J Hydrol 378:253–262CrossRef Cimen M, Kisi O (2009) Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J Hydrol 378:253–262CrossRef
Zurück zum Zitat Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229–240CrossRef Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229–240CrossRef
Zurück zum Zitat Demirel MC, Venancio A, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv Eng Softw 40:467–473CrossRef Demirel MC, Venancio A, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv Eng Softw 40:467–473CrossRef
Zurück zum Zitat Golyandina N, Korobeynikov A (2014) Basic singular spectrum analysis and forecasting with R. Comput Stat Data An 71:934–954CrossRef Golyandina N, Korobeynikov A (2014) Basic singular spectrum analysis and forecasting with R. Comput Stat Data An 71:934–954CrossRef
Zurück zum Zitat Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC
Zurück zum Zitat Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Res 31(10):2517–2530CrossRef Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Res 31(10):2517–2530CrossRef
Zurück zum Zitat Jaipuria S, Mahapatra SS (2014) An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Syst Appl 41(5):2395–2408CrossRef Jaipuria S, Mahapatra SS (2014) An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Syst Appl 41(5):2395–2408CrossRef
Zurück zum Zitat Ji H, Yucheng B, Huiyuan W (2011) Electromechanical equipment state forecasting based on genetic algorithm-support vector regression. Expert Syst Appl 38:8399–8402CrossRef Ji H, Yucheng B, Huiyuan W (2011) Electromechanical equipment state forecasting based on genetic algorithm-support vector regression. Expert Syst Appl 38:8399–8402CrossRef
Zurück zum Zitat Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput Geosci 54:1–8CrossRef Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput Geosci 54:1–8CrossRef
Zurück zum Zitat Kalteh AM (2015) Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting. Water Resour Manage 29(4):1283–1293CrossRef Kalteh AM (2015) Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting. Water Resour Manage 29(4):1283–1293CrossRef
Zurück zum Zitat Kalteh AM, Berndtsson R (2007) Interpolating monthly precipitation by self-organizing map (SOM) and multilayer perceptron (MLP). Hydrolog Sci J 52(2):305–317CrossRef Kalteh AM, Berndtsson R (2007) Interpolating monthly precipitation by self-organizing map (SOM) and multilayer perceptron (MLP). Hydrolog Sci J 52(2):305–317CrossRef
Zurück zum Zitat Kisi O (2012) Modeling discharge-suspended sediment relationship using least square support vector machine. J Hydrol 456–457:110–120CrossRef Kisi O (2012) Modeling discharge-suspended sediment relationship using least square support vector machine. J Hydrol 456–457:110–120CrossRef
Zurück zum Zitat Kisi O (2015) Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour Manage 29(14):5109–5127CrossRef Kisi O (2015) Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour Manage 29(14):5109–5127CrossRef
Zurück zum Zitat Kisi O, Cimen M (2009) Evapotranspiration modelling using support vector machines. Hydrolog Sci J 54(5):918–928CrossRef Kisi O, Cimen M (2009) Evapotranspiration modelling using support vector machines. Hydrolog Sci J 54(5):918–928CrossRef
Zurück zum Zitat Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140CrossRef Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140CrossRef
Zurück zum Zitat Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450–451:48–58CrossRef Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450–451:48–58CrossRef
Zurück zum Zitat Lin YJ, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrolog Sci J 51(4):599–612CrossRef Lin YJ, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrolog Sci J 51(4):599–612CrossRef
Zurück zum Zitat Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE T Pattern Anal 11(7):674–693CrossRef Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE T Pattern Anal 11(7):674–693CrossRef
Zurück zum Zitat Mellit A, Pavan AM, Benghanem M (2012) Least squares support vector machine for short-term prediction of meteorological time series. Theor Appl Climatol 111(1–2):297–307 Mellit A, Pavan AM, Benghanem M (2012) Least squares support vector machine for short-term prediction of meteorological time series. Theor Appl Climatol 111(1–2):297–307
Zurück zum Zitat Pai PF (2006) System reliability forecasting by support vector machines with genetic algorithms. Math Comput Model 43(3–4):262–274CrossRef Pai PF (2006) System reliability forecasting by support vector machines with genetic algorithms. Math Comput Model 43(3–4):262–274CrossRef
Zurück zum Zitat Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(2):199–212CrossRef Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(2):199–212CrossRef
Zurück zum Zitat Rocco SCM (2013) Singular spectrum analysis and forecasting of failure time series. Reliab Eng Syst Safe 114(1):126–136CrossRef Rocco SCM (2013) Singular spectrum analysis and forecasting of failure time series. Reliab Eng Syst Safe 114(1):126–136CrossRef
Zurück zum Zitat Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sc 15:1835–1852CrossRef Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sc 15:1835–1852CrossRef
Zurück zum Zitat Shabri A, Suhartono (2012) Streamflow forecasting using least-squares support vector machines. Hydrolog Sci J 57(7):1–19CrossRef Shabri A, Suhartono (2012) Streamflow forecasting using least-squares support vector machines. Hydrolog Sci J 57(7):1–19CrossRef
Zurück zum Zitat Suykens JAK (2001) Nonlinear modelling and support vector machines. In: Proceeding of IEEE Instrumentation and Measurement Technology Conference 1: 287–294 Suykens JAK (2001) Nonlinear modelling and support vector machines. In: Proceeding of IEEE Instrumentation and Measurement Technology Conference 1: 287–294
Zurück zum Zitat Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef
Zurück zum Zitat Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef
Zurück zum Zitat Wu CL, Chau KW (2011) Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399:394–409CrossRef Wu CL, Chau KW (2011) Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399:394–409CrossRef
Zurück zum Zitat Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358(1–2):96–111CrossRef Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358(1–2):96–111CrossRef
Zurück zum Zitat Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389:146–167CrossRef Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389:146–167CrossRef
Zurück zum Zitat Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396(1–2):128–138CrossRef Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396(1–2):128–138CrossRef
Zurück zum Zitat Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716CrossRef Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716CrossRef
Metadaten
Titel
Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques
verfasst von
Aman Mohammad Kalteh
Publikationsdatum
01.01.2016
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 2/2016
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-1188-3

Weitere Artikel der Ausgabe 2/2016

Water Resources Management 2/2016 Zur Ausgabe