Skip to main content
Erschienen in: Rare Metals 4/2021

13.04.2018

Improving interface adhesion in TiNi wire/shape memory epoxy composites using carbon nanotubes

verfasst von: Xue Feng, Li-Min Zhao, Xu-Jun Mi, Guo-Jie Huang, Hao-Feng Xie, Xiang-Qian Yin, Li-Jun Peng, Zhen Yang

Erschienen in: Rare Metals | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to increase both the interfacial strength and interphase region strength between TiNi wires and shape memory epoxy, a novel interface structure including aminated CNTs was designed. The morphology shows that after electroplating and etching, continuous and homogeneous concave–convex layers form on the surface of as-treated TiNi wires, meanwhile aminated CNTs were planted on the surface which could react with shape memory epoxy at the interface region. The interfacial shear strength increases first with the CNT content rising but then a dramatic drop happens, and the maximum is obtained at CNT content of 0.6 g·L−1, which is about twice the result of acid etching TiNi wires.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Cai Y, Jiang J, Zheng B, Xie M. Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(e-caprolactone)-polyurethane nanocomposites. J Appl Polym Sci. 2013;127(1):49.CrossRef Cai Y, Jiang J, Zheng B, Xie M. Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(e-caprolactone)-polyurethane nanocomposites. J Appl Polym Sci. 2013;127(1):49.CrossRef
[2]
Zurück zum Zitat Yu K, Liu Y, Leng J. Conductive shape memory polymer composite incorporated with hybrid fillers: electrical, mechanical, and shape memory properties. J Intell Mater Syst Struct. 2011;22:369.CrossRef Yu K, Liu Y, Leng J. Conductive shape memory polymer composite incorporated with hybrid fillers: electrical, mechanical, and shape memory properties. J Intell Mater Syst Struct. 2011;22:369.CrossRef
[3]
Zurück zum Zitat Liu Y, Lv H, Lan X. Review of electro-active shape-memory polymer composite. Compos Sci Technol. 2009;69(13):2064.CrossRef Liu Y, Lv H, Lan X. Review of electro-active shape-memory polymer composite. Compos Sci Technol. 2009;69(13):2064.CrossRef
[4]
Zurück zum Zitat Leng J, Lu H, Liu Y. Shape-memory polymers: a class of novel smart materials. MRS Bull. 2009;34(11):848.CrossRef Leng J, Lu H, Liu Y. Shape-memory polymers: a class of novel smart materials. MRS Bull. 2009;34(11):848.CrossRef
[5]
Zurück zum Zitat Leng J, Lan X, Liu Y. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56(7):1077.CrossRef Leng J, Lan X, Liu Y. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56(7):1077.CrossRef
[6]
Zurück zum Zitat Leng J, Lan X, Liu Y. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett. 2008;92(1):014104.CrossRef Leng J, Lan X, Liu Y. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett. 2008;92(1):014104.CrossRef
[7]
Zurück zum Zitat Gall K, Mikulas M, Munshi N. carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct. 2000;11(11):877.CrossRef Gall K, Mikulas M, Munshi N. carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct. 2000;11(11):877.CrossRef
[8]
Zurück zum Zitat Lan X, Liu Y, Lv H. Fiber reinforced shape-memory polymer composite and its application in a deployable Hinge. Smart Mater Struct. 2009;18(2):024002.CrossRef Lan X, Liu Y, Lv H. Fiber reinforced shape-memory polymer composite and its application in a deployable Hinge. Smart Mater Struct. 2009;18(2):024002.CrossRef
[9]
Zurück zum Zitat Zhang C, Ni Q. Bending behavior of shape memory polymer based laminates. Compos Struct. 2007;78(2):153.CrossRef Zhang C, Ni Q. Bending behavior of shape memory polymer based laminates. Compos Struct. 2007;78(2):153.CrossRef
[10]
Zurück zum Zitat Prima M, Lesniewski M, Gall K, McDowell D, Sanderson T, Campbell D. Thermo-mechanical behavior of epoxy shape memory polymer foams. Smart Mater Struct. 2007;16:2330.CrossRef Prima M, Lesniewski M, Gall K, McDowell D, Sanderson T, Campbell D. Thermo-mechanical behavior of epoxy shape memory polymer foams. Smart Mater Struct. 2007;16:2330.CrossRef
[11]
Zurück zum Zitat Behl M, Razzaq M, Lendlein A. Multifunctional shape-memory polymers. Adv Mater. 2010;22:3388.CrossRef Behl M, Razzaq M, Lendlein A. Multifunctional shape-memory polymers. Adv Mater. 2010;22:3388.CrossRef
[12]
Zurück zum Zitat Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434(7035):879.CrossRef Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434(7035):879.CrossRef
[13]
Zurück zum Zitat Liu Y, Gall K, Dunn ML, Mccluskey P. Thermomechanics of shape memory polymer nanocomposites. Mech Mater. 2004;36(10):929.CrossRef Liu Y, Gall K, Dunn ML, Mccluskey P. Thermomechanics of shape memory polymer nanocomposites. Mech Mater. 2004;36(10):929.CrossRef
[14]
Zurück zum Zitat Faiella G, Antonucci V, Daghia F, Fascia S, Giordano M. Fabrication and thermomechanical characterization of a shape memory alloy hybrid composite. J Intell Mater Syst Struct. 2011;22(3):245.CrossRef Faiella G, Antonucci V, Daghia F, Fascia S, Giordano M. Fabrication and thermomechanical characterization of a shape memory alloy hybrid composite. J Intell Mater Syst Struct. 2011;22(3):245.CrossRef
[15]
Zurück zum Zitat Payandeh Y, Meraghni F, Patoor E, Eberhardt A. Study of the martensitic transformation in NiTi–epoxy smart composite and its effect on the overall behavior. Mater Des. 2012;39:104.CrossRef Payandeh Y, Meraghni F, Patoor E, Eberhardt A. Study of the martensitic transformation in NiTi–epoxy smart composite and its effect on the overall behavior. Mater Des. 2012;39:104.CrossRef
[16]
Zurück zum Zitat Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N. Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct. 2006;17(12):1075.CrossRef Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N. Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct. 2006;17(12):1075.CrossRef
[17]
Zurück zum Zitat Tobushi H, Hoshio K, Hayashi S, Miwa N. Shape memory composite of SMA and SMP and its property. Key Eng Mater. 2007;340–341:1187.CrossRef Tobushi H, Hoshio K, Hayashi S, Miwa N. Shape memory composite of SMA and SMP and its property. Key Eng Mater. 2007;340–341:1187.CrossRef
[18]
Zurück zum Zitat Tobushi H, Hayashi S, Sugimoto Y, Date K. Two-way bending properties of shape memory composite with SMA and SMP. Materials. 2009;2(3):1180.CrossRef Tobushi H, Hayashi S, Sugimoto Y, Date K. Two-way bending properties of shape memory composite with SMA and SMP. Materials. 2009;2(3):1180.CrossRef
[19]
Zurück zum Zitat Ghosh P, Rao A, Srinivasa A. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater Des. 2013;44:164.CrossRef Ghosh P, Rao A, Srinivasa A. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater Des. 2013;44:164.CrossRef
[20]
Zurück zum Zitat Feng X, Zhao L, Mi X, Li Y, Xie H, Yin X, Gao B. Improved shape memory composites combined with TiNi wire and shape memory epoxy. Mater Des. 2014;50:724.CrossRef Feng X, Zhao L, Mi X, Li Y, Xie H, Yin X, Gao B. Improved shape memory composites combined with TiNi wire and shape memory epoxy. Mater Des. 2014;50:724.CrossRef
[21]
Zurück zum Zitat Jang B, Kishi T. Adhesive strength between TiNi fibers embedded in CFRP composites. Mater Lett. 2005;59(11):1338.CrossRef Jang B, Kishi T. Adhesive strength between TiNi fibers embedded in CFRP composites. Mater Lett. 2005;59(11):1338.CrossRef
[22]
Zurück zum Zitat Jonnalagadda K, Kline G, Sottos N. Local displacements and load transfer in shape memory alloy composites. Exp Mech. 1997;37(1):78.CrossRef Jonnalagadda K, Kline G, Sottos N. Local displacements and load transfer in shape memory alloy composites. Exp Mech. 1997;37(1):78.CrossRef
[23]
Zurück zum Zitat Rossi S, Deflorian F, Pegoretti A. Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf Coat Tech. 2008;202:2214.CrossRef Rossi S, Deflorian F, Pegoretti A. Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf Coat Tech. 2008;202:2214.CrossRef
[24]
Zurück zum Zitat Smith N, Antoun G, Ellis A. Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos Part A-Appl Sci Manufact. 2004;35:1307.CrossRef Smith N, Antoun G, Ellis A. Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos Part A-Appl Sci Manufact. 2004;35:1307.CrossRef
[25]
Zurück zum Zitat Neuking K, Zarifa A, Eggeler G. Surface engineering of shape memory alloy/polymer-composites: improvement of the adhesion between polymers and pseudoelastic shape memory alloys. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2008;481:606.CrossRef Neuking K, Zarifa A, Eggeler G. Surface engineering of shape memory alloy/polymer-composites: improvement of the adhesion between polymers and pseudoelastic shape memory alloys. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2008;481:606.CrossRef
[26]
Zurück zum Zitat Lau K, Chan A, Shi S. Debond induced by strain recovery of an embedded NiTi wire at a NiTi/epoxy interface: micro-scale observation. Mater Des. 2002;23:265.CrossRef Lau K, Chan A, Shi S. Debond induced by strain recovery of an embedded NiTi wire at a NiTi/epoxy interface: micro-scale observation. Mater Des. 2002;23:265.CrossRef
[27]
Zurück zum Zitat Payandeh Y, Meraghni F, Patoor E. Debonding initiation in a NiTi shape memory wire-epoxy matrix composite. Influence of martensitic transformation. Mater Des. 2010;31:1077.CrossRef Payandeh Y, Meraghni F, Patoor E. Debonding initiation in a NiTi shape memory wire-epoxy matrix composite. Influence of martensitic transformation. Mater Des. 2010;31:1077.CrossRef
[28]
Zurück zum Zitat Coleman J, Khan U, Blau W. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624.CrossRef Coleman J, Khan U, Blau W. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624.CrossRef
[29]
Zurück zum Zitat Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630.CrossRef Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630.CrossRef
[30]
Zurück zum Zitat Qian H, Bismarck A, Greenhalgh E. Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mater. 2008;20:1862.CrossRef Qian H, Bismarck A, Greenhalgh E. Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mater. 2008;20:1862.CrossRef
[31]
Zurück zum Zitat Zhang J, Zhuang R, Liu J. Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon. 2010;48:2273.CrossRef Zhang J, Zhuang R, Liu J. Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon. 2010;48:2273.CrossRef
Metadaten
Titel
Improving interface adhesion in TiNi wire/shape memory epoxy composites using carbon nanotubes
verfasst von
Xue Feng
Li-Min Zhao
Xu-Jun Mi
Guo-Jie Huang
Hao-Feng Xie
Xiang-Qian Yin
Li-Jun Peng
Zhen Yang
Publikationsdatum
13.04.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1029-7

Weitere Artikel der Ausgabe 4/2021

Rare Metals 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.