Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.10.2019 | Special Issue Paper | Ausgabe 1/2020 Open Access

The VLDB Journal 1/2020

In-memory database acceleration on FPGAs: a survey

The VLDB Journal > Ausgabe 1/2020
Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, H. Peter Hofstee
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs integrated with conventional I/O provide insufficient bandwidth, limiting performance. Second, GPUs, which can also provide high throughput, and are easier to program, have emerged as a strong accelerator alternative. Third, programming FPGAs required developers to have full-stack skills, from high-level algorithm design to low-level circuit implementations. The good news is that these challenges are being addressed. New interface technologies connect FPGAs into the system at main-memory bandwidth and the latest FPGAs provide local memory competitive in capacity and bandwidth with GPUs. Ease of programming is improving through support of shared coherent virtual memory between the host and the accelerator, support for higher-level languages, and domain-specific tools to generate FPGA designs automatically. Therefore, this paper surveys using FPGAs to accelerate in-memory database systems targeting designs that can operate at the speed of main memory.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

The VLDB Journal 1/2020 Zur Ausgabe

Premium Partner