Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2019

07.03.2019 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

In situ sol–gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery

verfasst von: Lee Tian Khoon, Mark-Lee Wun Fui, Nur Hasyareeda Hassan, Mohd Sukor Su’ait, Raman Vedarajan, Noriyoshi Matsumi, Mohammad Bin Kassim, Loh Kee Shyuan, Azizan Ahmad

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nano-composite polymer electrolyte (NCPE), poly(vinylidenefluoride-hexafluoropropylene)-poly(methylmethacrylate) grafted natural rubber with lithium tetrafluoroborate and zirconia (PVdF-HFP/MG49-LiBF4-ZrO2) was prepared by a facile one-pot in situ sol–gel method. The influence of zirconia nano-fillers on the electrochemical, chemical and structural properties of polymer electrolyte was investigated. The interaction of polymer electrolyte and zirconia was explored via density functional theory (DFT). Electrochemical impedance spectroscopy study showed that the optimum ionic conductivity is 2.39 × 10−3 S cm−1 (6 wt% zirconia). X-ray diffractogram results revealed a decreasing trend of crystalline phases and no lithium salt peaks were observed upon the addition of zirconia. As a result, the LiBF4 salt was well-solvated in the polymer matrix with a one-fold increase in lithium transference number. Remarkably, a good electrochemical stability was achieved at 6.9 V from a linear sweep voltammetry (LSV) analysis. Observations from the infrared spectra indicate that chemical interactions occurred at the carbonyl and fluoride functional groups and is further corroborated by DFT studies. Micrograph images showed that the zirconia nano-particles were successfully produced (7–15 nm). The nanocomposite polymer electrolyte possesses promising charge/discharge performance and has the potential to be applied in lithium-ion polymer battery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Guangming Z, Feng L, Huiming C (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 4:1307–1338 Guangming Z, Feng L, Huiming C (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 4:1307–1338
2.
Zurück zum Zitat Da QL, Chao YX, Xiao MX, Chun XZ, Ke SX, Xiaon QC, Shi BQ (2016) Sol–gel preparation of Li rich layered cathode material for lithioum ion battery with polymer polyacrylic acid+citric acid chelators. J Sol–Gel Sci Technol 78:403–410CrossRef Da QL, Chao YX, Xiao MX, Chun XZ, Ke SX, Xiaon QC, Shi BQ (2016) Sol–gel preparation of Li rich layered cathode material for lithioum ion battery with polymer polyacrylic acid+citric acid chelators. J Sol–Gel Sci Technol 78:403–410CrossRef
3.
Zurück zum Zitat Hyunhyub K, Rehan K, Kuniharu T, Toshitake T, Xiaobo Z, Ali J (2012) Multifunctional, flexible electronic systems based on engineering nanostructured materials. Nanotechnology 23:344001CrossRef Hyunhyub K, Rehan K, Kuniharu T, Toshitake T, Xiaobo Z, Ali J (2012) Multifunctional, flexible electronic systems based on engineering nanostructured materials. Nanotechnology 23:344001CrossRef
4.
Zurück zum Zitat Dae-Hyeong K, Jonathan V, Jason JA, Jianliang X, Leif V, Yun-Soung K, Justin AB, Bruce P, Eric SF, Diego C, David LK, Fiorenzo GO, Yonggang H, Keh-Chih H, Mitchell RZ, Brian L, John AR (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef Dae-Hyeong K, Jonathan V, Jason JA, Jianliang X, Leif V, Yun-Soung K, Justin AB, Bruce P, Eric SF, Diego C, David LK, Fiorenzo GO, Yonggang H, Keh-Chih H, Mitchell RZ, Brian L, John AR (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef
5.
Zurück zum Zitat Razali I, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolyes based on modified natural rubber for use in rechargeable lithium. Batter J Power Sources 94:206–211CrossRef Razali I, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolyes based on modified natural rubber for use in rechargeable lithium. Batter J Power Sources 94:206–211CrossRef
6.
Zurück zum Zitat TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly (methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion 276:72–79CrossRef TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly (methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion 276:72–79CrossRef
7.
Zurück zum Zitat Lee TK, Siti A, Azizan A, Dahlan HM, Rahman MYA (2012) Temperature dependence of conductivity of plasticized poly (vinyl chloride)-low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16:2251–2260CrossRef Lee TK, Siti A, Azizan A, Dahlan HM, Rahman MYA (2012) Temperature dependence of conductivity of plasticized poly (vinyl chloride)-low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16:2251–2260CrossRef
8.
Zurück zum Zitat Ferraria S, Quartaronea E, Mustarellia P, Magistrisa A, Fagnonib M, Prottib S, Gerbaldic AC (2010) Ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195:559–566CrossRef Ferraria S, Quartaronea E, Mustarellia P, Magistrisa A, Fagnonib M, Prottib S, Gerbaldic AC (2010) Ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195:559–566CrossRef
9.
Zurück zum Zitat Kuo CW, Huang CW, Chen BK, Li WB, Chen PR, Ho TH, Tseng CG, Wu TY (2013) Enhanced ionic conductivity in PAN–PEGME-LiClO4-PC composite polymer electrolytes. Int J Electrochem Sci 8:3834–3850 Kuo CW, Huang CW, Chen BK, Li WB, Chen PR, Ho TH, Tseng CG, Wu TY (2013) Enhanced ionic conductivity in PAN–PEGME-LiClO4-PC composite polymer electrolytes. Int J Electrochem Sci 8:3834–3850
10.
Zurück zum Zitat HyeKil E, HoChoi K, JeongHa H, Xu S, Rogers JA, RiKim M, GiLee Y, ManKim K, YoungCho K, YoungLee S (2013) Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Mater 25:1395–1400 HyeKil E, HoChoi K, JeongHa H, Xu S, Rogers JA, RiKim M, GiLee Y, ManKim K, YoungCho K, YoungLee S (2013) Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Mater 25:1395–1400
11.
Zurück zum Zitat Vickraman P, Ramamurthy S (2006) A study on the blending effect of PVDF in the ionic transport mechanism of plasticized PVC-LiBF4 polymer electrolyte. Mater Lett 60:3431–3436CrossRef Vickraman P, Ramamurthy S (2006) A study on the blending effect of PVDF in the ionic transport mechanism of plasticized PVC-LiBF4 polymer electrolyte. Mater Lett 60:3431–3436CrossRef
12.
Zurück zum Zitat Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163 Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163
13.
Zurück zum Zitat Kedi C, Haijing J, Weihua P (2014) Comparative investigation of organic solution and ionic liquid as electrolyte under lithium-air battery. Int J Electrochem Sci 9:390–397 Kedi C, Haijing J, Weihua P (2014) Comparative investigation of organic solution and ionic liquid as electrolyte under lithium-air battery. Int J Electrochem Sci 9:390–397
14.
Zurück zum Zitat Tan C, Hackenberg K, Qiang F, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 3:1152–1156 Tan C, Hackenberg K, Qiang F, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 3:1152–1156
15.
Zurück zum Zitat Johnson P, Jacobsson P (2004) TiO2 nano particles in the polymer electrolytes: surface interactions. Solid State Ion 170:73–78CrossRef Johnson P, Jacobsson P (2004) TiO2 nano particles in the polymer electrolytes: surface interactions. Solid State Ion 170:73–78CrossRef
16.
Zurück zum Zitat Chung SH, Wang Y, Persi L (2001) Enhancement of the ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 98:644–648CrossRef Chung SH, Wang Y, Persi L (2001) Enhancement of the ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 98:644–648CrossRef
17.
Zurück zum Zitat Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 294:456–458CrossRef Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 294:456–458CrossRef
18.
Zurück zum Zitat Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A (2011) Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta 56:4092–4099CrossRef Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A (2011) Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta 56:4092–4099CrossRef
19.
Zurück zum Zitat Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH (2010) Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. ‎Electrochim Acta 55:5204–5209CrossRef Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH (2010) Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. ‎Electrochim Acta 55:5204–5209CrossRef
20.
Zurück zum Zitat GuangSun X, Dai S (2010) Electrochemical investigation of ionic liquid with vinylene carbonate for applications in rechargeable lithium ion batteries. ‎Electrochim Acta 5:4618–4626 GuangSun X, Dai S (2010) Electrochemical investigation of ionic liquid with vinylene carbonate for applications in rechargeable lithium ion batteries. ‎Electrochim Acta 5:4618–4626
21.
Zurück zum Zitat Yan C, Zaijun L, Hailang Z, Yinjun F, Xu F, Junkang L (2010) 1-Alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids as highly safe electrolyte for Li/LiFePO4 battery. ‎Electrochim Acta 55:4728–4733CrossRef Yan C, Zaijun L, Hailang Z, Yinjun F, Xu F, Junkang L (2010) 1-Alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids as highly safe electrolyte for Li/LiFePO4 battery. ‎Electrochim Acta 55:4728–4733CrossRef
22.
Zurück zum Zitat Padbury R, Xiangwu Z (2010) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196:4436–4444CrossRef Padbury R, Xiangwu Z (2010) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196:4436–4444CrossRef
23.
Zurück zum Zitat Xiao J, Jianzhi H, Deyu W, Dehong H, Xu W, Graff GL, Zimin N, Liu J, GuangZhang J (2011) Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte. J Power Sources 196:5674–5678CrossRef Xiao J, Jianzhi H, Deyu W, Dehong H, Xu W, Graff GL, Zimin N, Liu J, GuangZhang J (2011) Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte. J Power Sources 196:5674–5678CrossRef
24.
Zurück zum Zitat Fernando P, Mariano R, Ricardo F, Álvaro WM (2017) Experimental and theoretical study of ionic pair dissociation in a lithium ion−linear polyethylenimine−polyacrylonitrile blend for solid polymer electrolytes. J Phys Chem B 121:6759–6765CrossRef Fernando P, Mariano R, Ricardo F, Álvaro WM (2017) Experimental and theoretical study of ionic pair dissociation in a lithium ion−linear polyethylenimine−polyacrylonitrile blend for solid polymer electrolytes. J Phys Chem B 121:6759–6765CrossRef
25.
Zurück zum Zitat Dan Z, Rui Z, Chuanxiang C, Wu-Aik Y, Junhua K, Guoqiang D, Xuehong L (2013) Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J Phys Chem B 117:7783–7789CrossRef Dan Z, Rui Z, Chuanxiang C, Wu-Aik Y, Junhua K, Guoqiang D, Xuehong L (2013) Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J Phys Chem B 117:7783–7789CrossRef
26.
Zurück zum Zitat Miller TF, Wang ZG, Coates GW, Balsara NP (2017) Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc Chem Res 50:590–593CrossRef Miller TF, Wang ZG, Coates GW, Balsara NP (2017) Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc Chem Res 50:590–593CrossRef
27.
Zurück zum Zitat Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233CrossRef Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233CrossRef
28.
Zurück zum Zitat Peng C, Xiaoping L, Jun W, Di Z, Shanmin Y, Weishan W, Wei Z, Xiaowei F, Dequan Y (2017) PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Sol–Gel Sci Technol 81:850–858CrossRef Peng C, Xiaoping L, Jun W, Di Z, Shanmin Y, Weishan W, Wei Z, Xiaowei F, Dequan Y (2017) PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Sol–Gel Sci Technol 81:850–858CrossRef
29.
Zurück zum Zitat Zou H, Lin YS (2014) Structural and surface chemical properties of Sol–Gel derived TiO2-ZrO2 oxides. Appl Catal A 265:35–42CrossRef Zou H, Lin YS (2014) Structural and surface chemical properties of Sol–Gel derived TiO2-ZrO2 oxides. Appl Catal A 265:35–42CrossRef
30.
Zurück zum Zitat Perez-Hernandez R, Mendoza-Anaya D, Fernandez ME, Gomez-Cortes A (2008) Synthesis of mixed ZrO2-TiO2 oxides by Sol–Gel: microstructural characterization and infrared spectroscopy studies of NOx. J Mol Catal A 281:200–206CrossRef Perez-Hernandez R, Mendoza-Anaya D, Fernandez ME, Gomez-Cortes A (2008) Synthesis of mixed ZrO2-TiO2 oxides by Sol–Gel: microstructural characterization and infrared spectroscopy studies of NOx. J Mol Catal A 281:200–206CrossRef
31.
Zurück zum Zitat Manriquez ME, Lopez T, Gomez R, Navarrete J (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A 220:229–237CrossRef Manriquez ME, Lopez T, Gomez R, Navarrete J (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A 220:229–237CrossRef
32.
Zurück zum Zitat Wetjen M, Kim G, Joost M, Winter M, Passerini S (2013) Temperature dependence of electrochemical properties of cross-linked poly(ehtylne oxide) -lithium bis(trifluoromethanesulfonyl) imide - N-buty l-N-methylprrolidinium bis (trifluoromethanesulfonyl) imide solid polymer electrolytes for lithium batteries. Electrochim Acta 87:779–787CrossRef Wetjen M, Kim G, Joost M, Winter M, Passerini S (2013) Temperature dependence of electrochemical properties of cross-linked poly(ehtylne oxide) -lithium bis(trifluoromethanesulfonyl) imide - N-buty l-N-methylprrolidinium bis (trifluoromethanesulfonyl) imide solid polymer electrolytes for lithium batteries. Electrochim Acta 87:779–787CrossRef
33.
Zurück zum Zitat Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Synthesis of nanocrystalline zirconia using Sol–Gel and precipitation techniques. Ind Eng Chem Res 45:8643–8650CrossRef Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Synthesis of nanocrystalline zirconia using Sol–Gel and precipitation techniques. Ind Eng Chem Res 45:8643–8650CrossRef
34.
Zurück zum Zitat Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O (2013) Highly reversible lithium metal anode. Sci Rep 4:3815–3822CrossRef Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O (2013) Highly reversible lithium metal anode. Sci Rep 4:3815–3822CrossRef
35.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef
36.
Zurück zum Zitat Becke AD (1993) Density functional thermochemistry III: the role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density functional thermochemistry III: the role of exact exchange. J Chem Phys 98:5648–5652CrossRef
37.
Zurück zum Zitat Davidson ER, Feller D (1986) Basis set selection for molecular calculations. Chem Rev 86:681–696CrossRef Davidson ER, Feller D (1986) Basis set selection for molecular calculations. Chem Rev 86:681–696CrossRef
38.
Zurück zum Zitat Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Acc Chem Res 9:399–406CrossRef Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Acc Chem Res 9:399–406CrossRef
39.
Zurück zum Zitat Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
40.
Zurück zum Zitat Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461CrossRef Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461CrossRef
41.
Zurück zum Zitat Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638CrossRef Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638CrossRef
42.
Zurück zum Zitat Puthirath AB, Patra S, Pal S, Manoj M, Balan AP, Jayalekshimi S, Tharangatu NN (2017) Transparent flexible lithium ion conducting solid polymer electrolyte. J Mater Chem A 5:11152–11162CrossRef Puthirath AB, Patra S, Pal S, Manoj M, Balan AP, Jayalekshimi S, Tharangatu NN (2017) Transparent flexible lithium ion conducting solid polymer electrolyte. J Mater Chem A 5:11152–11162CrossRef
43.
Zurück zum Zitat Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376CrossRef Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376CrossRef
44.
Zurück zum Zitat Arun KS, Vignesh M, Subramania A (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7:45390–45399CrossRef Arun KS, Vignesh M, Subramania A (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7:45390–45399CrossRef
45.
Zurück zum Zitat Paneroa S, Scrosati B, Sumathipalaa HH, Wieczorek W (2007) Dual-composite polymer electrolytes with enhanced transport properties. J Power Sources 167:510–514CrossRef Paneroa S, Scrosati B, Sumathipalaa HH, Wieczorek W (2007) Dual-composite polymer electrolytes with enhanced transport properties. J Power Sources 167:510–514CrossRef
46.
Zurück zum Zitat Xing L, Guohua G, Yindan L, Zeyuan G, Pengliang L, Guangming W (2017) Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries. J Sol–Gel Sci Technol 82:224–232CrossRef Xing L, Guohua G, Yindan L, Zeyuan G, Pengliang L, Guangming W (2017) Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries. J Sol–Gel Sci Technol 82:224–232CrossRef
47.
Zurück zum Zitat Ying T, Danqing Y, Baojun Z (2018) Synthesis of LiNiPO4 via citrate sol–gel route. J Sol–Gel Sci Technol 87:240–244CrossRef Ying T, Danqing Y, Baojun Z (2018) Synthesis of LiNiPO4 via citrate sol–gel route. J Sol–Gel Sci Technol 87:240–244CrossRef
48.
Zurück zum Zitat Croce F, Persi L, Ronci F, Scrosati B (2000) Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ion 135:47–52CrossRef Croce F, Persi L, Ronci F, Scrosati B (2000) Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ion 135:47–52CrossRef
49.
Zurück zum Zitat Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703 Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703
50.
Zurück zum Zitat Wu CG, Lu MI, Tsai CH, Chuang HJ (2006) PVDF-HFP/metal oxide nanocomposite: the matrices for high-conducting, low leakage porous polymer electrolytes. J Power Sources 159:295–300CrossRef Wu CG, Lu MI, Tsai CH, Chuang HJ (2006) PVDF-HFP/metal oxide nanocomposite: the matrices for high-conducting, low leakage porous polymer electrolytes. J Power Sources 159:295–300CrossRef
51.
Zurück zum Zitat TianKhoon L, Ataollahi N, Hassan NH, Ahmad A (2016) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20:203–213CrossRef TianKhoon L, Ataollahi N, Hassan NH, Ahmad A (2016) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20:203–213CrossRef
52.
Zurück zum Zitat Mahmood WAK, Khan MMR, Azarian MH (2013) Sol–gel synthesis and morphology, thermal and optical properties of epoxidized natural rubber/zirconia hybrid films. J Non-Cryst Solids 378:152–157CrossRef Mahmood WAK, Khan MMR, Azarian MH (2013) Sol–gel synthesis and morphology, thermal and optical properties of epoxidized natural rubber/zirconia hybrid films. J Non-Cryst Solids 378:152–157CrossRef
53.
Zurück zum Zitat Chuanglong W, Monica S, James AK, Leon LS (2015) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode material. J Electrochem Soc 162(8):1601–1609CrossRef Chuanglong W, Monica S, James AK, Leon LS (2015) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode material. J Electrochem Soc 162(8):1601–1609CrossRef
54.
Zurück zum Zitat Chuanglong W, Monica S, Satya E, Caihong L, Leon LS (2015) Na3MnCO3PO4—a high capacity, multi-electron transfers redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328CrossRef Chuanglong W, Monica S, Satya E, Caihong L, Leon LS (2015) Na3MnCO3PO4—a high capacity, multi-electron transfers redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328CrossRef
55.
Zurück zum Zitat Kim DW, Noh KA, Chun JH, Kim SH, Ko JM (2011) Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ion 144:329–337CrossRef Kim DW, Noh KA, Chun JH, Kim SH, Ko JM (2011) Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ion 144:329–337CrossRef
56.
Zurück zum Zitat Fang S, Zhang Z, Jin Y, Yang L, Hirano S, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196:5637–5644CrossRef Fang S, Zhang Z, Jin Y, Yang L, Hirano S, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196:5637–5644CrossRef
57.
Zurück zum Zitat Appetecchi GB, Kim GT, Montanino M, Alessandrini F, Passerini S (2011) Room temperature lithium polymer batteries based on ionic liquids. J Power Sources 196:6703–6709CrossRef Appetecchi GB, Kim GT, Montanino M, Alessandrini F, Passerini S (2011) Room temperature lithium polymer batteries based on ionic liquids. J Power Sources 196:6703–6709CrossRef
Metadaten
Titel
In situ sol–gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery
verfasst von
Lee Tian Khoon
Mark-Lee Wun Fui
Nur Hasyareeda Hassan
Mohd Sukor Su’ait
Raman Vedarajan
Noriyoshi Matsumi
Mohammad Bin Kassim
Loh Kee Shyuan
Azizan Ahmad
Publikationsdatum
07.03.2019
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2019
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-019-04936-1

Weitere Artikel der Ausgabe 3/2019

Journal of Sol-Gel Science and Technology 3/2019 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Nanorose-like ZnCo2O4 coatings synthesized via sol–gel route: morphology, grain growth and DFT simulations

Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Effect of the processing temperature on the electrical properties of lead-free 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 piezoelectric ceramics synthesized by sol–gel method

Original Paper: Devices based on sol-gel or hybrid materials

Perovskite solar cells free of hole transport layer

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Sol–gel synthesis, dielectric, and morphological characterization of Pb1−xSrxTiO3 (x = 0.8) ferroelectric perovskite

Original Paper: Sol–gel and hybrid materials for biological and health (medical) applications

Synthesis of Ag-doped TiO2 nanoparticles coated with carbon nanotubes by the sol–gel method and their antibacterial activities

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.