Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2021

24.04.2021 | Original Research Article

In Vitro Corrosion Anisotropy Assessment of Ti6Al4V Bimodal Microstructure due to Crystallographic Texture

verfasst von: Mohabbat Amirnejad, Mohammad Rajabi, Roohollah Jamaati

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of crystallographic texture on the corrosion performance of the Ti6Al4V alloy with a typical bimodal microstructure has been studied on three orthogonal surfaces of the rectangular sample. The optical microscopy (OM) and scanning electron microscopy (SEM) observations revealed that the same microstructure is developed on three surfaces via heat treatment. The crystallographic planes, which are located in parallel to each surface, have been evaluated through macrotexture analysis. The electrochemical measurements showed that the RD-ND surface (i.e., surface normal to transverse direction), in which \( \left\{ { 0 0 0 2} \right\} \) and \( \{ 11\bar{2}0\} \) crystallographic planes are placed in parallel to the surface, has the lowest corrosion rate equal to 2.2 × 10−5 mm/year. In contrast, the corrosion rate of the TD-ND surface, which is normal to the rolling direction, with \( \left\{ { 1 0\bar{1} 0} \right\} \) planes in parallel to the surface is ~ 15 times greater than that of the RD-TD surface. Electrochemical impedance spectroscopy (EIS) results showed that the greater corrosion resistance of different surfaces is mainly dependent on the passive layer properties formed on each surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Pandey, A. Awasthi, and K.K. Saxena: Adv. Mater. Process. Technol., 2020, vol. 00, pp. 1–36. A. Pandey, A. Awasthi, and K.K. Saxena: Adv. Mater. Process. Technol., 2020, vol. 00, pp. 1–36.
2.
Zurück zum Zitat R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, and M.R. Raza: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1261–74. R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, and M.R. Raza: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1261–74.
3.
Zurück zum Zitat Y. Ito, N. Hoshi, T. Hayakawa, C. Ohkubo, H. Miura, and K. Kimoto: Mater. Sci. Eng. B, 2019, vol. 245, pp. 30–6. Y. Ito, N. Hoshi, T. Hayakawa, C. Ohkubo, H. Miura, and K. Kimoto: Mater. Sci. Eng. B, 2019, vol. 245, pp. 30–6.
4.
Zurück zum Zitat C. Xia, D. Cai, J. Tan, K. Li, Y. Qiao, and X. Liu: ACS Biomater. Sci. Eng., 2018, vol. 4, pp. 3185–93. C. Xia, D. Cai, J. Tan, K. Li, Y. Qiao, and X. Liu: ACS Biomater. Sci. Eng., 2018, vol. 4, pp. 3185–93.
5.
Zurück zum Zitat M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp 397-425 M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp 397-425
6.
Zurück zum Zitat S. Bose, L.C. Pathak, and R. Singh: Appl. Surf. Sci., 2018, vol. 433, pp. 1158–74. S. Bose, L.C. Pathak, and R. Singh: Appl. Surf. Sci., 2018, vol. 433, pp. 1158–74.
7.
Zurück zum Zitat O.S. Adesina, B.A. Obadele, G.A. Farotade, D.A. Isadare, A.A. Adediran, and P.P. Ikubanni: J. Alloys Compd., 2020, vol. 827, p. 154245. O.S. Adesina, B.A. Obadele, G.A. Farotade, D.A. Isadare, A.A. Adediran, and P.P. Ikubanni: J. Alloys Compd., 2020, vol. 827, p. 154245.
8.
Zurück zum Zitat M.M.M. López, J. Fauré, M.I.E. Cabrera, and M.E.C. García: Mater. Sci. Eng. B, 2016, vol. 206, pp. 30–38. M.M.M. López, J. Fauré, M.I.E. Cabrera, and M.E.C. García: Mater. Sci. Eng. B, 2016, vol. 206, pp. 30–38.
9.
Zurück zum Zitat M. Fazel, H.R. Salimijazi, and M. Shamanian: ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 15281–7. M. Fazel, H.R. Salimijazi, and M. Shamanian: ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 15281–7.
10.
Zurück zum Zitat L. Benea, A. Ravoiu, and J.P. Celis: ACS Biomater. Sci. Eng., 2019, vol. 5, pp. 5925–34. L. Benea, A. Ravoiu, and J.P. Celis: ACS Biomater. Sci. Eng., 2019, vol. 5, pp. 5925–34.
11.
Zurück zum Zitat D.P. Perl and S. Moalem: J. Alzheimer’s Dis. 2006, vol. 9, pp. 291–300. D.P. Perl and S. Moalem: J. Alzheimer’s Dis. 2006, vol. 9, pp. 291–300.
12.
Zurück zum Zitat M.-J. Hosseini, F. Shaki, M. Ghazi-Khansari, and J. Pourahmad: Metallomics, 2013, vol. 5, pp. 152–66. M.-J. Hosseini, F. Shaki, M. Ghazi-Khansari, and J. Pourahmad: Metallomics, 2013, vol. 5, pp. 152–66.
13.
Zurück zum Zitat G.C. Mckay, R. Macnair, C. Macdonald, and M.H. Grant: Biomaterials, 1996; 17:1339-44. G.C. Mckay, R. Macnair, C. Macdonald, and M.H. Grant: Biomaterials, 1996; 17:1339-44.
14.
Zurück zum Zitat M. Matsuo, S. Suwas, and R.K. Ray: Crystallographic Texture of Materials, Springer, New York, 2014. M. Matsuo, S. Suwas, and R.K. Ray: Crystallographic Texture of Materials, Springer, New York, 2014.
15.
Zurück zum Zitat V.A. Popovich, E. V. Borisov, A.A. Popovich, V.S. Sufiiarov, D. V. Masaylo, and L. Alzina: Mater. Des., 2017, vol. 114, pp. 441–9. V.A. Popovich, E. V. Borisov, A.A. Popovich, V.S. Sufiiarov, D. V. Masaylo, and L. Alzina: Mater. Des., 2017, vol. 114, pp. 441–9.
16.
Zurück zum Zitat C.Q. Li, D.K. Xu, S. Yu, L.Y. Sheng, and E.H. Han: J. Mater. Sci. Technol., 2017, vol. 33, pp. 475–80. C.Q. Li, D.K. Xu, S. Yu, L.Y. Sheng, and E.H. Han: J. Mater. Sci. Technol., 2017, vol. 33, pp. 475–80.
17.
Zurück zum Zitat A. Amininejad, R. Jamaati, and S.J. Hosseinipour: Mater. Sci. Eng. A, 2019, vol. 767, p. 138433. A. Amininejad, R. Jamaati, and S.J. Hosseinipour: Mater. Sci. Eng. A, 2019, vol. 767, p. 138433.
18.
Zurück zum Zitat X. Ren, Y. Huang, and Y. Liu: J. Mater. Eng. Perform., 2018, vol. 27, pp. 3932–9. X. Ren, Y. Huang, and Y. Liu: J. Mater. Eng. Perform., 2018, vol. 27, pp. 3932–9.
19.
Zurück zum Zitat F. Briffod, A. Bleuset, T. Shiraiwa, and M. Enoki: Acta Mater., 2019, vol. 177, pp. 56–67. F. Briffod, A. Bleuset, T. Shiraiwa, and M. Enoki: Acta Mater., 2019, vol. 177, pp. 56–67.
20.
Zurück zum Zitat W. Zhang, L. Tan, D. Ni, J. Chen, Y.C. Zhao, L. Liu, C. Shuai, K. Yang, A. Atrens, and M.C. Zhao: J. Mater. Sci. Technol., 2019, vol. 35, pp. 777–83. W. Zhang, L. Tan, D. Ni, J. Chen, Y.C. Zhao, L. Liu, C. Shuai, K. Yang, A. Atrens, and M.C. Zhao: J. Mater. Sci. Technol., 2019, vol. 35, pp. 777–83.
21.
Zurück zum Zitat J. Fu, F. Li, J. Sun, K. Cui, X. Du, and Y. Wu: J. Electroanal. Chem., 2019, vol. 841, pp. 56–62. J. Fu, F. Li, J. Sun, K. Cui, X. Du, and Y. Wu: J. Electroanal. Chem., 2019, vol. 841, pp. 56–62.
22.
Zurück zum Zitat É. Martin, M. Azzi, G.A. Salishchev, and J. Szpunar: Tribol. Int., 2010, vol. 43, pp. 918–24. É. Martin, M. Azzi, G.A. Salishchev, and J. Szpunar: Tribol. Int., 2010, vol. 43, pp. 918–24.
23.
Zurück zum Zitat S. Bahl, P.L. Nithilaksh, S. Suwas, S. V. Kailas, and K. Chatterjee: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4206–16. S. Bahl, P.L. Nithilaksh, S. Suwas, S. V. Kailas, and K. Chatterjee: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4206–16.
24.
Zurück zum Zitat M. Amirnejad, M. Rajabi, and R. Jamaati: Corros. Sci., 2021, vol. 179, p. 109100. M. Amirnejad, M. Rajabi, and R. Jamaati: Corros. Sci., 2021, vol. 179, p. 109100.
25.
Zurück zum Zitat Z.X. Zhang, S.J. Qu, A.H. Feng, X. Hu, and J. Shen: J. Alloys Compd., 2019, vol. 773, pp. 277–87. Z.X. Zhang, S.J. Qu, A.H. Feng, X. Hu, and J. Shen: J. Alloys Compd., 2019, vol. 773, pp. 277–87.
26.
Zurück zum Zitat J. Zhang, X. Li, D. Xu, and R. Yang: Prog. Nat. Sci. Mater. Int., 2019, vol. 29, pp. 295–304. J. Zhang, X. Li, D. Xu, and R. Yang: Prog. Nat. Sci. Mater. Int., 2019, vol. 29, pp. 295–304.
27.
Zurück zum Zitat M. Villa, J.W. Brooks, R.P. Turner, H. Wang, F. Boitout, and R.M. Ward: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2898–911. M. Villa, J.W. Brooks, R.P. Turner, H. Wang, F. Boitout, and R.M. Ward: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2898–911.
28.
Zurück zum Zitat N. Stanford and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 5215–24. N. Stanford and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 5215–24.
29.
Zurück zum Zitat W. Kou, Q. Sun, L. Xiao, and J. Sun: J. Alloys Compd., 2020, vol. 820, p. 153421. W. Kou, Q. Sun, L. Xiao, and J. Sun: J. Alloys Compd., 2020, vol. 820, p. 153421.
30.
Zurück zum Zitat W. Simka, A. Sadkowski, M. Warczak, A. Iwaniak, G. Dercz, J. Michalska, and A. MacIej: Electrochim. Acta, 2011, vol. 56, pp. 8962–8. W. Simka, A. Sadkowski, M. Warczak, A. Iwaniak, G. Dercz, J. Michalska, and A. MacIej: Electrochim. Acta, 2011, vol. 56, pp. 8962–8.
31.
Zurück zum Zitat X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, and R.D.K. Misra: Corros. Sci., 2018, vol. 145, pp. 80–9. X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, and R.D.K. Misra: Corros. Sci., 2018, vol. 145, pp. 80–9.
32.
Zurück zum Zitat I. Milošev, T. Kosec, and H.H. Strehblow: Electrochim. Acta, 2008, vol. 53, pp. 3547–58. I. Milošev, T. Kosec, and H.H. Strehblow: Electrochim. Acta, 2008, vol. 53, pp. 3547–58.
33.
Zurück zum Zitat L. Wang, H. Yu, K. Wang, H. Xu, S. Wang, and D. Sun: ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 18608–19. L. Wang, H. Yu, K. Wang, H. Xu, S. Wang, and D. Sun: ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 18608–19.
34.
Zurück zum Zitat A.C. Hee, S.S. Jamali, A. Bendavid, P.J. Martin, C. Kong, and Y. Zhao: Surf. Coatings Technol., 2016, vol. 307, pp. 666–75. A.C. Hee, S.S. Jamali, A. Bendavid, P.J. Martin, C. Kong, and Y. Zhao: Surf. Coatings Technol., 2016, vol. 307, pp. 666–75.
35.
Zurück zum Zitat G. ASTM, G102, and G. ASTM: G102-89, ASTM Int. West Conshohocken, 2004, vol. 89, pp. 1–7. G. ASTM, G102, and G. ASTM: G102-89, ASTM Int. West Conshohocken, 2004, vol. 89, pp. 1–7.
36.
Zurück zum Zitat A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, and J.C.S. Fernandes: Electrochim. Acta, 2017, vol. 234, pp. 16–27. A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, and J.C.S. Fernandes: Electrochim. Acta, 2017, vol. 234, pp. 16–27.
37.
Zurück zum Zitat C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man: Appl. Surf. Sci., 2009, vol. 255, pp. 6736–44. C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man: Appl. Surf. Sci., 2009, vol. 255, pp. 6736–44.
38.
Zurück zum Zitat H.A. Videla: Manual of Biocorrosion, CRC Press, Boca Raton, 1996. H.A. Videla: Manual of Biocorrosion, CRC Press, Boca Raton, 1996.
39.
Zurück zum Zitat D.J. Blackwood: Electrochim. Acta, 2000, vol. 46, pp. 563–9. D.J. Blackwood: Electrochim. Acta, 2000, vol. 46, pp. 563–9.
40.
Zurück zum Zitat S. V. Gnedenkov and S.L. Sinebryukhov: Elektrokhimiya, 2005, vol. 41, pp. 963–71. S. V. Gnedenkov and S.L. Sinebryukhov: Elektrokhimiya, 2005, vol. 41, pp. 963–71.
41.
Zurück zum Zitat S.K. Poznyak, A.D. Lisenkov, M.G.S. Ferreira, A.I. Kulak, and M.L. Zheludkevich: Electrochim. Acta, 2012, vol. 76, pp. 453–61. S.K. Poznyak, A.D. Lisenkov, M.G.S. Ferreira, A.I. Kulak, and M.L. Zheludkevich: Electrochim. Acta, 2012, vol. 76, pp. 453–61.
42.
Zurück zum Zitat P. Qin, Y. Chen, Y.J. Liu, J. Zhang, L.Y. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, and L.C. Zhang: ACS Biomater. Sci. Eng., 2019, vol. 5:1141-49. P. Qin, Y. Chen, Y.J. Liu, J. Zhang, L.Y. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, and L.C. Zhang: ACS Biomater. Sci. Eng., 2019, vol. 5:1141-49.
43.
Zurück zum Zitat S. BenAoun, M. Bouklah, K.F. Khaled, and B. Hammouti: Int. J. Electrochem. Sci., 2016, vol. 11, pp. 7343–58. S. BenAoun, M. Bouklah, K.F. Khaled, and B. Hammouti: Int. J. Electrochem. Sci., 2016, vol. 11, pp. 7343–58.
44.
Zurück zum Zitat A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski: J. Nanomater., 2014. Doi:10.1155/2014/124814.CrossRef A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski: J. Nanomater., 2014. Doi:10.1155/2014/124814.CrossRef
45.
Zurück zum Zitat M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 3064–7. M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 3064–7.
46.
Zurück zum Zitat G. Lütjering and J.C. Williams: Titanium, Springer, New York, 2007. G. Lütjering and J.C. Williams: Titanium, Springer, New York, 2007.
47.
Zurück zum Zitat B. Pazhanivel, P. Sathiya, and G. Sozhan: Opt. Laser Technol., 2020,vol. 125, 106017 B. Pazhanivel, P. Sathiya, and G. Sozhan: Opt. Laser Technol., 2020,vol. 125, 106017
48.
Zurück zum Zitat C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New York, 2003. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New York, 2003.
49.
Zurück zum Zitat H.G. Kim, T.H. Kim, and Y.H. Jeong: J. Nucl. Mater., 2002, vol. 306, pp. 44–53. H.G. Kim, T.H. Kim, and Y.H. Jeong: J. Nucl. Mater., 2002, vol. 306, pp. 44–53.
50.
Zurück zum Zitat H.H. Wu, P. Wisesa, and D.R. Trinkle: Phys. Rev. B, 2016, vol. 94, pp. 1–7. H.H. Wu, P. Wisesa, and D.R. Trinkle: Phys. Rev. B, 2016, vol. 94, pp. 1–7.
51.
Zurück zum Zitat Y.H. Ho, S.S. Joshi, T.C. Wu, C.M. Hung, N.J. Ho, and N.B. Dahotre: Mater. Sci. Eng. C, 2020, vol. 109, p. 110632. Y.H. Ho, S.S. Joshi, T.C. Wu, C.M. Hung, N.J. Ho, and N.B. Dahotre: Mater. Sci. Eng. C, 2020, vol. 109, p. 110632.
52.
Zurück zum Zitat B.Q. Fu, W. Liu, and Z.L. Li: Appl. Surf. Sci., 2009, vol. 255, pp. 9348–57. B.Q. Fu, W. Liu, and Z.L. Li: Appl. Surf. Sci., 2009, vol. 255, pp. 9348–57.
53.
Zurück zum Zitat K.D. Ralston, N. Birbilis, and C.H.J.J. Davies: Scr. Mater., 2010, vol. 63, pp. 1201–4. K.D. Ralston, N. Birbilis, and C.H.J.J. Davies: Scr. Mater., 2010, vol. 63, pp. 1201–4.
54.
Zurück zum Zitat W.T. Huo, L.Z. Zhao, W. Zhang, J.W. Lu, Y.Q. Zhao, and Y.S. Zhang: Mater. Sci. Eng. C, 2018, vol. 92, pp. 268–79. W.T. Huo, L.Z. Zhao, W. Zhang, J.W. Lu, Y.Q. Zhao, and Y.S. Zhang: Mater. Sci. Eng. C, 2018, vol. 92, pp. 268–79.
Metadaten
Titel
In Vitro Corrosion Anisotropy Assessment of Ti6Al4V Bimodal Microstructure due to Crystallographic Texture
verfasst von
Mohabbat Amirnejad
Mohammad Rajabi
Roohollah Jamaati
Publikationsdatum
24.04.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06278-6

Weitere Artikel der Ausgabe 7/2021

Metallurgical and Materials Transactions A 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.