Skip to main content

2011 | OriginalPaper | Buchkapitel

Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI

verfasst von : Albert Montillo, Dimitris Metaxas, Leon Axel

Erschienen in: Computational Biomechanics for Medicine

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most automated methods for cardiac segmentation are not directly applicable to tagged MRI (tMRI) because they do not handle all of the analysis challenges: tags obscure heart boundaries, low contrast, image artifacts, and radial image planes. Other methods do not process all acquired tMRI data or do not ensure tissue incompressibility. In this chapter, we present a cardiac segmentation method for tMRI which requires no user input, suppresses image artifacts, extracts heart features using 3D grayscale morphology, and constructs a biventricular model from the data that ensures the near incompressibility of heart tissue. We project landmarks of 3D features along curves in the solution to a PDE, and embed biomechanical constraints using the finite element method. Testing on normal and diseased subjects yields an RMS segmentation accuracy of ∼ 2 mm, comparing favorably with manual segmentation, interexpert variability and segmentation methods for nontagged cine MRI.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989;172:349–350. Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989;172:349–350.
2.
Zurück zum Zitat Zerhouni E, Parish D, Rogers W, Yang A, Shapiro E. Human heart: tagging with MR imaging-a method for non-invasive assessment of myocardial motion. Radiology. 1988;169:59–63. Zerhouni E, Parish D, Rogers W, Yang A, Shapiro E. Human heart: tagging with MR imaging-a method for non-invasive assessment of myocardial motion. Radiology. 1988;169:59–63.
3.
Zurück zum Zitat Haber I, Metaxas D, Axel L. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal. 2000;4(4):335–355.CrossRef Haber I, Metaxas D, Axel L. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal. 2000;4(4):335–355.CrossRef
4.
Zurück zum Zitat Tustison N, Amini A. Myocardial kinematics based on tagged MRI from volumetric NURBS models. In: SPIE. vol. 5369; 2003. Tustison N, Amini A. Myocardial kinematics based on tagged MRI from volumetric NURBS models. In: SPIE. vol. 5369; 2003.
5.
Zurück zum Zitat Young A, Axel L. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization–a model-based approach. Radiology. 1992;185:241–247. Young A, Axel L. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization–a model-based approach. Radiology. 1992;185:241–247.
6.
Zurück zum Zitat Osman N, Prince J. Angle images for measuring heart motion from tagged MRI. In: ICIP; 1998. p.704–8. Osman N, Prince J. Angle images for measuring heart motion from tagged MRI. In: ICIP; 1998. p.704–8.
7.
Zurück zum Zitat Young A, Fayad Z, Axel L. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol. 1996;271:H2677–H2688. Young A, Fayad Z, Axel L. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol. 1996;271:H2677–H2688.
8.
Zurück zum Zitat Hu Z, Metaxas D, Axel L. In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal. 2003;7(4):435–444.CrossRef Hu Z, Metaxas D, Axel L. In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal. 2003;7(4):435–444.CrossRef
9.
Zurück zum Zitat Dornier C, Ivancevic M, Lecoq G, Osman N, Foxall D, Righetti A, et al. Assessment of the left ventricle ejection fraction by MRI tagging. In: ISMRM; 2002. Dornier C, Ivancevic M, Lecoq G, Osman N, Foxall D, Righetti A, et al. Assessment of the left ventricle ejection fraction by MRI tagging. In: ISMRM; 2002.
10.
Zurück zum Zitat Guttman M, Prince J, McVeigh E. Tag and Contour Detection in Tagged MR Images of the Left Ventricle. IEEE Trans Med Imaging. 1994;13(1):74–88.CrossRef Guttman M, Prince J, McVeigh E. Tag and Contour Detection in Tagged MR Images of the Left Ventricle. IEEE Trans Med Imaging. 1994;13(1):74–88.CrossRef
11.
Zurück zum Zitat Montillo A, Metaxas D, Axel L. Automated deformable model-based segmentation of the left and right ventricles in tagged cardiac MRI. In: MICCAI; 2003. p. 507–515. Montillo A, Metaxas D, Axel L. Automated deformable model-based segmentation of the left and right ventricles in tagged cardiac MRI. In: MICCAI; 2003. p. 507–515.
12.
Zurück zum Zitat Qian Z, Metaxas D, Axel L. Boosting and nonparametric based tracking of tagged MRI cardiac boundaries. In: MICCAI; 2006. p. 636–644. Qian Z, Metaxas D, Axel L. Boosting and nonparametric based tracking of tagged MRI cardiac boundaries. In: MICCAI; 2006. p. 636–644.
13.
Zurück zum Zitat Huang J, Huang X, Metaxas D, Axel L. Adaptive Metamorphs Model for 3D Medical Image Segmentation. In: MICCAI; 2007. Huang J, Huang X, Metaxas D, Axel L. Adaptive Metamorphs Model for 3D Medical Image Segmentation. In: MICCAI; 2007.
14.
Zurück zum Zitat Sundar H, Davatzikos C, Biros G. Biomechanically-Constrained 4D Estimation of Myocardial Motion. In: MICCAI; 2009. Sundar H, Davatzikos C, Biros G. Biomechanically-Constrained 4D Estimation of Myocardial Motion. In: MICCAI; 2009.
15.
Zurück zum Zitat Chandrashekara R, Mohiaddin R, Razavi R, Rueckert D. Nonrigid Image Registration with Subdivision Lattices: Application to Cardiac MR Image Analysis. In: MICCAI; 2007. Chandrashekara R, Mohiaddin R, Razavi R, Rueckert D. Nonrigid Image Registration with Subdivision Lattices: Application to Cardiac MR Image Analysis. In: MICCAI; 2007.
16.
Zurück zum Zitat Zhang S, Wang X, Metaxas D, Chen T, Axel L. LV surface reconstruction from sparse tMRI using laplacian surface deformation and optimization. In: ISBI; 2009. p. 698–701. Zhang S, Wang X, Metaxas D, Chen T, Axel L. LV surface reconstruction from sparse tMRI using laplacian surface deformation and optimization. In: ISBI; 2009. p. 698–701.
17.
Zurück zum Zitat Yang L, Georgescu B, Zheng Y, Meer P, Comaniciu D. 3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In: CVPR; 2008. Yang L, Georgescu B, Zheng Y, Meer P, Comaniciu D. 3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In: CVPR; 2008.
18.
Zurück zum Zitat Zhu Y, Papademetris X, Sinusas A, Duncan JS. Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint. MICCAI. 2007;10(Pt 1): 44–51. Zhu Y, Papademetris X, Sinusas A, Duncan JS. Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint. MICCAI. 2007;10(Pt 1): 44–51.
19.
Zurück zum Zitat Ecabert O, Peters J, Schramm H, Lorenz C, Von Berg J, Walker MJ, et al. Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging. 2008; 27(9):1189–1202.CrossRef Ecabert O, Peters J, Schramm H, Lorenz C, Von Berg J, Walker MJ, et al. Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging. 2008; 27(9):1189–1202.CrossRef
20.
Zurück zum Zitat Bistoquet A, Oshinski J, Skrinjar O. Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model. Med Image Anal. 2008;12(1):69–85.CrossRef Bistoquet A, Oshinski J, Skrinjar O. Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model. Med Image Anal. 2008;12(1):69–85.CrossRef
21.
Zurück zum Zitat Zhuge Y, Udupa J, Liu J, Saha P, Iwanaga T. A Scale-Based Method for Correcting Background Intensity Variation in Acquired Images. In: SPIE; 2002. p. 1103–1111. Zhuge Y, Udupa J, Liu J, Saha P, Iwanaga T. A Scale-Based Method for Correcting Background Intensity Variation in Acquired Images. In: SPIE; 2002. p. 1103–1111.
22.
Zurück zum Zitat Nyul L, Udupa J, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging. 2000;19(2):143–150.CrossRef Nyul L, Udupa J, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging. 2000;19(2):143–150.CrossRef
23.
Zurück zum Zitat Herman G, Zheng J, Bucholtz C. Shape-based interpolation. IEEE Comput Graph. 1992;p. 69–80. Herman G, Zheng J, Bucholtz C. Shape-based interpolation. IEEE Comput Graph. 1992;p. 69–80.
24.
Zurück zum Zitat Xu C, Prince J. Generalized Gradient Vector Flow external forces for active contours. Sig Proc. 1998;71:131–9.MATHCrossRef Xu C, Prince J. Generalized Gradient Vector Flow external forces for active contours. Sig Proc. 1998;71:131–9.MATHCrossRef
25.
Zurück zum Zitat Cook R, Malkus D, M P. Concepts and applications of finite element analysis. Wiley; 1989. Cook R, Malkus D, M P. Concepts and applications of finite element analysis. Wiley; 1989.
26.
Zurück zum Zitat Macneal R. Finite Elements: Their Design and Performance. Marcel Dekker; 1994. Macneal R. Finite Elements: Their Design and Performance. Marcel Dekker; 1994.
27.
Zurück zum Zitat Qian Z, Metaxas D, Axel L. Learning methods in segmentation of tMRI. ISBI; 2007. p. 688–691. Qian Z, Metaxas D, Axel L. Learning methods in segmentation of tMRI. ISBI; 2007. p. 688–691.
28.
Zurück zum Zitat Herzka D, Guttman M, McVeigh E. Myocardial tagging with SSFP. Magn Reson Med. 2003;49(6):329–340.CrossRef Herzka D, Guttman M, McVeigh E. Myocardial tagging with SSFP. Magn Reson Med. 2003;49(6):329–340.CrossRef
29.
Zurück zum Zitat Ryf S, Spiegel MA, Gerber M, Boesiger P. Myocardial tagging with 3D-CSPAMM. J of Mag Res Imaging. 2002;16:320–325.CrossRef Ryf S, Spiegel MA, Gerber M, Boesiger P. Myocardial tagging with 3D-CSPAMM. J of Mag Res Imaging. 2002;16:320–325.CrossRef
Metadaten
Titel
Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI
verfasst von
Albert Montillo
Dimitris Metaxas
Leon Axel
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9619-0_15

Neuer Inhalt