Skip to main content
Erschienen in: Social Network Analysis and Mining 1/2023

01.12.2023 | Original Article

Infection curve flattening via targeted interventions and self-isolation

verfasst von: Mohammadreza Doostmohammadian, Houman Zarrabi, Azam Doustmohammadian, Hamid R. Rabiee

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding the impact of network clustering and small-world properties on epidemic spread can be crucial in developing effective strategies for managing and controlling infectious diseases. Particularly in this work, we study the impact of these network features on targeted intervention (e.g., self-isolation and quarantine). The targeted individuals for self-isolation are based on centrality measures and node influence metrics. Compared to our previous works on scale-free networks, small-world networks are considered in this paper. Small-world networks resemble real-world social and human networks. In this type of network, most nodes are not directly connected but can be reached through a few intermediaries (known as the small-worldness property). Real social networks, such as friendship networks, also exhibit this small-worldness property, where most people are connected through a relatively small number of intermediaries. We particularly study the epidemic curve flattening by centrality-based interventions/isolation over small-world networks. Our results show that high clustering, while having low small-worldness (higher shortest path characteristics) implies flatter infection curves. In reality, a flatter infection curve implies that the number of new cases of a disease is spread out over a longer period of time, rather than a sharp and sudden increase in cases (a peak in epidemic). In turn, this reduces the strain on healthcare resources and helps to relieve the healthcare services.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The prevalence of the shortcut links is related to the rewiring probability \(\beta\).
 
2
Regarding the other two small-worldness measures, \(\mathcal {S}_1\) is not properly defined in large-scale and \(\mathcal {S}_3\) changes similar to the \(\mathcal {S}_2\) measure, and therefore, are skipped here.
 
Literatur
Zurück zum Zitat Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730CrossRef Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730CrossRef
Zurück zum Zitat Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, Mills MC (2020) Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat Hum Behav 4(6):588–596CrossRef Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, Mills MC (2020) Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat Hum Behav 4(6):588–596CrossRef
Zurück zum Zitat Blondel VD, Guillaume J, Hendrickx JM, Jungers RM (2007) Distance distribution in random graphs and application to network exploration. Phys Rev E 76:066101MathSciNetCrossRef Blondel VD, Guillaume J, Hendrickx JM, Jungers RM (2007) Distance distribution in random graphs and application to network exploration. Phys Rev E 76:066101MathSciNetCrossRef
Zurück zum Zitat Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1):113–120CrossRef Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1):113–120CrossRef
Zurück zum Zitat Brett T (2021) Understanding contagion spreading processes of cyber security threats through social networks. Ph.D. thesis, University of Greenwich Brett T (2021) Understanding contagion spreading processes of cyber security threats through social networks. Ph.D. thesis, University of Greenwich
Zurück zum Zitat Chang S, Pierson E, Koh P, Gerardin J, Redbird B, Grusky D, Leskovec J (2021) Mobility network models of covid-19 explain inequities and inform reopening. Nature 589(7840):82–87CrossRef Chang S, Pierson E, Koh P, Gerardin J, Redbird B, Grusky D, Leskovec J (2021) Mobility network models of covid-19 explain inequities and inform reopening. Nature 589(7840):82–87CrossRef
Zurück zum Zitat Das K, Samanta S, Pal M (2018) Study on centrality measures in social networks: a survey. Soc Netw Anal Min 8:1–11CrossRef Das K, Samanta S, Pal M (2018) Study on centrality measures in social networks: a survey. Soc Netw Anal Min 8:1–11CrossRef
Zurück zum Zitat Doostmohammadian M, Khan UA (2020) On the controllability of clustered scale-free networks. J Complex Netw 8(1):014MathSciNet Doostmohammadian M, Khan UA (2020) On the controllability of clustered scale-free networks. J Complex Netw 8(1):014MathSciNet
Zurück zum Zitat Doostmohammadian M, Rabiee HR (2020) On the observability and controllability of large-scale IoT networks: reducing number of unmatched nodes via link addition. IEEE Control Syst Lett 5(5):1747–1752MathSciNetCrossRef Doostmohammadian M, Rabiee HR (2020) On the observability and controllability of large-scale IoT networks: reducing number of unmatched nodes via link addition. IEEE Control Syst Lett 5(5):1747–1752MathSciNetCrossRef
Zurück zum Zitat Doostmohammadian M, Rabiee HR (2023) Network-based control of epidemic via flattening the infection curve: high-clustered vs. low-clustered social networks. Soc Netw Anal Min 13:1–8CrossRef Doostmohammadian M, Rabiee HR (2023) Network-based control of epidemic via flattening the infection curve: high-clustered vs. low-clustered social networks. Soc Netw Anal Min 13:1–8CrossRef
Zurück zum Zitat Doostmohammadian M, Rabiee HR, Khan UA (2020) Centrality-based epidemic control in complex social networks. Soc Netw Anal Min 10:1–11CrossRef Doostmohammadian M, Rabiee HR, Khan UA (2020) Centrality-based epidemic control in complex social networks. Soc Netw Anal Min 10:1–11CrossRef
Zurück zum Zitat Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 56:35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 56:35–41CrossRef
Zurück zum Zitat Ghalmane Z, Hassouni ME, Cherifi H (2019) Immunization of networks with non-overlapping community structure. Soc Netw Anal Min 9:1–22CrossRef Ghalmane Z, Hassouni ME, Cherifi H (2019) Immunization of networks with non-overlapping community structure. Soc Netw Anal Min 9:1–22CrossRef
Zurück zum Zitat Giakkoupis G, Gionis A, Terzi E, Tsaparas P (2005)Models and algorithms for network immunization. Department of Computer Science, University of Helsinki, Tech. Rep. C-2005-75 Giakkoupis G, Gionis A, Terzi E, Tsaparas P (2005)Models and algorithms for network immunization. Department of Computer Science, University of Helsinki, Tech. Rep. C-2005-75
Zurück zum Zitat Gosak M, Duh M, Markovič R, Perc M (2021) Community lockdowns in social networks hardly mitigate epidemic spreading. New J Phys 23(4):043039MathSciNetCrossRef Gosak M, Duh M, Markovič R, Perc M (2021) Community lockdowns in social networks hardly mitigate epidemic spreading. New J Phys 23(4):043039MathSciNetCrossRef
Zurück zum Zitat Grabowski A, Kosiński RA (2004) Epidemic spreading in a hierarchical social network. Phys Rev E 70(3):031908CrossRef Grabowski A, Kosiński RA (2004) Epidemic spreading in a hierarchical social network. Phys Rev E 70(3):031908CrossRef
Zurück zum Zitat Hébert-Dufresne L, Althouse BM (2015) Complex dynamics of synergistic coinfections on realistically clustered networks. Proc Natl Acad Sci 112(33):10551–10556MathSciNetCrossRef Hébert-Dufresne L, Althouse BM (2015) Complex dynamics of synergistic coinfections on realistically clustered networks. Proc Natl Acad Sci 112(33):10551–10556MathSciNetCrossRef
Zurück zum Zitat Hébert-Dufresne L, Noël P, Marceau V, Allard A, Dubé LJ (2010) Propagation dynamics on networks featuring complex topologies. Phys Rev E 82(3):036115MathSciNetCrossRef Hébert-Dufresne L, Noël P, Marceau V, Allard A, Dubé LJ (2010) Propagation dynamics on networks featuring complex topologies. Phys Rev E 82(3):036115MathSciNetCrossRef
Zurück zum Zitat Humphries MD, Gurney K (2008) Network “small-world-ness’’: a quantitative method for determining canonical network equivalence. PloS one 3(4):e0002051CrossRef Humphries MD, Gurney K (2008) Network “small-world-ness’’: a quantitative method for determining canonical network equivalence. PloS one 3(4):e0002051CrossRef
Zurück zum Zitat Karaivanov A (2020) A social network model of covid-19. PloS one 15(10):e0240878CrossRef Karaivanov A (2020) A social network model of covid-19. PloS one 15(10):e0240878CrossRef
Zurück zum Zitat Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef
Zurück zum Zitat Lawyer G (2015) Understanding the influence of all nodes in a network. Sci Rep 5(1):8665CrossRef Lawyer G (2015) Understanding the influence of all nodes in a network. Sci Rep 5(1):8665CrossRef
Zurück zum Zitat Li Z, Zhu P, Zhao D, Deng Z, Wang Z (2019) Suppression of epidemic spreading process on multiplex networks via active immunization. Chaos Interdiscip J Nonlinear Sci 29(7):073111MathSciNetCrossRef Li Z, Zhu P, Zhao D, Deng Z, Wang Z (2019) Suppression of epidemic spreading process on multiplex networks via active immunization. Chaos Interdiscip J Nonlinear Sci 29(7):073111MathSciNetCrossRef
Zurück zum Zitat Liu Y, Sanhedrai H, Dong G, Shekhtman LM, Wang F, Buldyrev SV, Havlin S (2021) Efficient network immunization under limited knowledge. Natl Sci Rev 8(1):229 Liu Y, Sanhedrai H, Dong G, Shekhtman LM, Wang F, Buldyrev SV, Havlin S (2021) Efficient network immunization under limited knowledge. Natl Sci Rev 8(1):229
Zurück zum Zitat Liu G, Deng Y, Cheong KH (2022) Network immunization strategy by eliminating fringe nodes: A percolation perspective. IEEE Trans Syst Man Cybern Syst 53(3):1862–1871CrossRef Liu G, Deng Y, Cheong KH (2022) Network immunization strategy by eliminating fringe nodes: A percolation perspective. IEEE Trans Syst Man Cybern Syst 53(3):1862–1871CrossRef
Zurück zum Zitat Madar N, Kalisky T, Cohen R, Ben-avraham D, Havlin S (2004) Immunization and epidemic dynamics in complex networks. Eur Phys J B 38:269–276CrossRef Madar N, Kalisky T, Cohen R, Ben-avraham D, Havlin S (2004) Immunization and epidemic dynamics in complex networks. Eur Phys J B 38:269–276CrossRef
Zurück zum Zitat Neal ZP (2017) How small is it? comparing indices of small worldliness. Netw Sci 5(1):30–44CrossRef Neal ZP (2017) How small is it? comparing indices of small worldliness. Netw Sci 5(1):30–44CrossRef
Zurück zum Zitat Nguyen AD, Sénac P, Diaz M (2012) Understanding and modeling the small-world phenomenon in dynamic networks. In: International conference on modeling, analysis and simulation of wireless and mobile systems Nguyen AD, Sénac P, Diaz M (2012) Understanding and modeling the small-world phenomenon in dynamic networks. In: International conference on modeling, analysis and simulation of wireless and mobile systems
Zurück zum Zitat Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65(3):036104CrossRef Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65(3):036104CrossRef
Zurück zum Zitat Reppas AI, Spiliotis KG, Siettos CI (2011) On the effect of the path length of small-world networks on epidemic dynamics. Virulence 3:146–153CrossRef Reppas AI, Spiliotis KG, Siettos CI (2011) On the effect of the path length of small-world networks on epidemic dynamics. Virulence 3:146–153CrossRef
Zurück zum Zitat Reyna-Lara A, Soriano-Paños D, Gómez S, Granell C, Matamalas JT, Steinegger B, Arenas A, Gómez-Gardeñes J (2021) Virus spread versus contact tracing: Two competing contagion processes. Phys Rev Res 3(1):013163CrossRef Reyna-Lara A, Soriano-Paños D, Gómez S, Granell C, Matamalas JT, Steinegger B, Arenas A, Gómez-Gardeñes J (2021) Virus spread versus contact tracing: Two competing contagion processes. Phys Rev Res 3(1):013163CrossRef
Zurück zum Zitat Sallaberry A, Zaidi F, Melançon G (2013) Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc Netw Anal Min 3:597–609CrossRef Sallaberry A, Zaidi F, Melançon G (2013) Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc Netw Anal Min 3:597–609CrossRef
Zurück zum Zitat Scarpino SV, Iamarino A, Wells C, Yamin D, Ndeffo-Mbah M, Wenzel NS, Fox SJ, Nyenswah T, Altice FL, Galvani AP et al (2015) Epidemiological and viral genomic sequence analysis of the 2014 ebola outbreak reveals clustered transmission. Clin Infect Dis 60(7):1079–1082CrossRef Scarpino SV, Iamarino A, Wells C, Yamin D, Ndeffo-Mbah M, Wenzel NS, Fox SJ, Nyenswah T, Altice FL, Galvani AP et al (2015) Epidemiological and viral genomic sequence analysis of the 2014 ebola outbreak reveals clustered transmission. Clin Infect Dis 60(7):1079–1082CrossRef
Zurück zum Zitat Shang J, Liu L, Li X, Xie F, Wu C (2015) Epidemic spreading on complex networks with overlapping and non-overlapping community structure. Phys A Stat Mech Appl 419:171–182MathSciNetCrossRef Shang J, Liu L, Li X, Xie F, Wu C (2015) Epidemic spreading on complex networks with overlapping and non-overlapping community structure. Phys A Stat Mech Appl 419:171–182MathSciNetCrossRef
Zurück zum Zitat Sullivan D (2007) What is google pagerank? a guide for searchers & webmasters. Search engine land, Kansas Sullivan D (2007) What is google pagerank? a guide for searchers & webmasters. Search engine land, Kansas
Zurück zum Zitat Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ (2011) The ubiquity of small-world networks. Brain Connect 1(5):367–375CrossRef Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ (2011) The ubiquity of small-world networks. Brain Connect 1(5):367–375CrossRef
Zurück zum Zitat Thedchanamoorthy G, Piraveenan M, Uddin S, Senanayake U (2014) Influence of vaccination strategies and topology on the herd immunity of complex networks. Soc Netw Anal Min 4:1–16CrossRef Thedchanamoorthy G, Piraveenan M, Uddin S, Senanayake U (2014) Influence of vaccination strategies and topology on the herd immunity of complex networks. Soc Netw Anal Min 4:1–16CrossRef
Zurück zum Zitat Volz EM, Miller JC, Galvani A, Ancel Meyers L (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput Biol 7(6):e1002042MathSciNetCrossRef Volz EM, Miller JC, Galvani A, Ancel Meyers L (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput Biol 7(6):e1002042MathSciNetCrossRef
Zurück zum Zitat Wang S, Gong M, Liu W, Wu Y (2020) Preventing epidemic spreading in networks by community detection and memetic algorithm. Appl Soft Comput 89:106118CrossRef Wang S, Gong M, Liu W, Wu Y (2020) Preventing epidemic spreading in networks by community detection and memetic algorithm. Appl Soft Comput 89:106118CrossRef
Zurück zum Zitat Wasserman S, Faust K (1994) Social network analysis: Methods and applications Wasserman S, Faust K (1994) Social network analysis: Methods and applications
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442CrossRef
Zurück zum Zitat Wu Q, Fu X, Jin Z, Small M (2015) Influence of dynamic immunization on epidemic spreading in networks. Phys A Stat Mech Appl 419:566–574CrossRef Wu Q, Fu X, Jin Z, Small M (2015) Influence of dynamic immunization on epidemic spreading in networks. Phys A Stat Mech Appl 419:566–574CrossRef
Zurück zum Zitat Zaidi F (2013) Small world networks and clustered small world networks with random connectivity. Soc Netw Anal Min 3:51–63CrossRef Zaidi F (2013) Small world networks and clustered small world networks with random connectivity. Soc Netw Anal Min 3:51–63CrossRef
Zurück zum Zitat Zuzek LGA, Buono C, Braunstein LA (2015) Epidemic spreading and immunization strategy in multiplex networks. J Phys Conf Ser 640:012007CrossRef Zuzek LGA, Buono C, Braunstein LA (2015) Epidemic spreading and immunization strategy in multiplex networks. J Phys Conf Ser 640:012007CrossRef
Metadaten
Titel
Infection curve flattening via targeted interventions and self-isolation
verfasst von
Mohammadreza Doostmohammadian
Houman Zarrabi
Azam Doustmohammadian
Hamid R. Rabiee
Publikationsdatum
01.12.2023
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2023
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01141-5

Weitere Artikel der Ausgabe 1/2023

Social Network Analysis and Mining 1/2023 Zur Ausgabe

Premium Partner