Skip to main content
Erschienen in: Fire Technology 1/2016

01.01.2016

Inferring and Propagating Kinetic Parameter Uncertainty for Condensed Phase Burning Models

verfasst von: Morgan C. Bruns

Erschienen in: Fire Technology | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kinetic parameters for serial pyrolysis reactions were calibrated from thermogravimetric analysis (TGA) data using Bayesian inference via Markov Chain Monte Carlo (MCMC) simulations assuming a serial reaction mechanism. Calibrations were performed for high-impact polystyrene (HIPS), bisphenol-A polycarbonate (PC), and poly(vinyl chloride) (PVC) at heating rates of 3 K/min and 10 K/min. The resulting parameter inferences are probabilistic as opposed to the point estimates calibrated in previous studies and are visualized using posterior probability density functions (PDFs) generated by kernel density estimation (KDE). Correlations between the parameters are identified and discussed. In particular, it is clear that pre-exponential constants and activation energies for a given reaction have a strong positive correlation. It is hypothesized that the degree of overlap in the posterior PDFs might be a measure of model adequacy. Point-estimates of the kinetic parameters were made by finding the mode of the posterior PDFs. For HIPS, it was determined that a one-reaction pyrolysis model is most appropriate, and that the posterior modes for \(\log \left( A_1\right) \) and \(E_1\) are \(19.5\,\log (1/s)\) and 292 kJ/mol, respectively, for the 3 K/min data. To evaluate the effect of kinetic parameter uncertainty on predictions of burning rate, samples from the posterior PDF were used to simulate gasification and cone calorimetry experiments using the fire dynamics simulator (FDS). In some cases, it was found that models with fewer parameters provided better predictions due to over-fitting associated with greater model complexity. Another important observation is that for the predictions of PVC cone calorimetry, the time to peak heat release rate can range from around 40 s to 180 s for a number of different kinetic parameter combinations that all fit the TGA data fairly well. It is argued that the proposed methodology is necessary for progress in modeling of condensed phase physics for fire problems as it supports both model validation and engineering predictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, technical reference guide volume 3: validation. Technical report, NIST McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, technical reference guide volume 3: validation. Technical report, NIST
2.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, technical reference guide volume 1: mathematical model. Technical report, NIST McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, technical reference guide volume 1: mathematical model. Technical report, NIST
3.
Zurück zum Zitat Lautenberger C, Fernanez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839CrossRef Lautenberger C, Fernanez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839CrossRef
4.
Zurück zum Zitat Stoliarov Stanislav I, Lyon Richard E (2008) Thermo-kinetic model of burning. Technical Report DOT/FAA/AR-TN08/17, FAA Stoliarov Stanislav I, Lyon Richard E (2008) Thermo-kinetic model of burning. Technical Report DOT/FAA/AR-TN08/17, FAA
5.
Zurück zum Zitat Lautenberger C, Rein G, Fernanez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41:204–214CrossRef Lautenberger C, Rein G, Fernanez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41:204–214CrossRef
6.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33:2599–2606CrossRef Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33:2599–2606CrossRef
7.
Zurück zum Zitat Lautenberger C, Fernandez-Pello C (2011) Optimization algorithms for material pyrolysis property estimation. In: Fire safety ccience: 10th international symposium, College Park Lautenberger C, Fernandez-Pello C (2011) Optimization algorithms for material pyrolysis property estimation. In: Fire safety ccience: 10th international symposium, College Park
8.
Zurück zum Zitat Rein G, Lautenberger C, Fernandez-Pello C, Torero JL, Urban D (2006) Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combus Flame 146:95–108CrossRef Rein G, Lautenberger C, Fernandez-Pello C, Torero JL, Urban D (2006) Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combus Flame 146:95–108CrossRef
9.
Zurück zum Zitat Bruns MC, Koo JH, Ezekoye OA (2009) Population-based models of thermoplastic degradation: using optimization to determine model parameters. Polym Degrad Stab 94(6):1013–1022CrossRef Bruns MC, Koo JH, Ezekoye OA (2009) Population-based models of thermoplastic degradation: using optimization to determine model parameters. Polym Degrad Stab 94(6):1013–1022CrossRef
10.
Zurück zum Zitat Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton
11.
Zurück zum Zitat Sivia DS (2006) Data analysis, 2nd edn. Oxford University Press, OxfordMATH Sivia DS (2006) Data analysis, 2nd edn. Oxford University Press, OxfordMATH
12.
Zurück zum Zitat Moser RD, Terejanu G, Oliver TA, Simmons CS (2012) Validating the prediction of unobserved quantities. Technical Report 12–32. The Institute for Computational Engineering Sciences Moser RD, Terejanu G, Oliver TA, Simmons CS (2012) Validating the prediction of unobserved quantities. Technical Report 12–32. The Institute for Computational Engineering Sciences
13.
Zurück zum Zitat Overholt KJ, Ezekoye OA (2014) Quantitative testing of fire scenario hypotheses: a bayesian inference approach. Fire Technol 1–33 Overholt KJ, Ezekoye OA (2014) Quantitative testing of fire scenario hypotheses: a bayesian inference approach. Fire Technol 1–33
14.
Zurück zum Zitat Overholt KJ (2013) Forward and inverse modeling of fire physics towards fire scene reconstructions. PhD thesis, The University of Texas at Austin Overholt KJ (2013) Forward and inverse modeling of fire physics towards fire scene reconstructions. PhD thesis, The University of Texas at Austin
15.
Zurück zum Zitat Stoliarov SI, Safranova N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef Stoliarov SI, Safranova N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef
16.
Zurück zum Zitat Chaos M (2013) Application of sensitivity analyses to condensed-phase pyrolysis modeling. Fire Saf J 61:254–264CrossRef Chaos M (2013) Application of sensitivity analyses to condensed-phase pyrolysis modeling. Fire Saf J 61:254–264CrossRef
17.
Zurück zum Zitat Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61:36–44CrossRef Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61:36–44CrossRef
18.
19.
Zurück zum Zitat Bolstad WM (2010) Understanding computational Bayesian statistics. Wiley, HobokenMATH Bolstad WM (2010) Understanding computational Bayesian statistics. Wiley, HobokenMATH
20.
Zurück zum Zitat Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculations for fast computing machines. J Chem Phys 21:1087–1092CrossRef Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculations for fast computing machines. J Chem Phys 21:1087–1092CrossRef
21.
Zurück zum Zitat Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57:97–109CrossRefMATH Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57:97–109CrossRefMATH
23.
Zurück zum Zitat Patil A, Huard D, Fonnesbeck CJ (2010) PyMC: Bayesian stochastic modelling in python. J Stat Softw 35:1–81CrossRef Patil A, Huard D, Fonnesbeck CJ (2010) PyMC: Bayesian stochastic modelling in python. J Stat Softw 35:1–81CrossRef
24.
Zurück zum Zitat Stoliarov SI, Crowley S, Lyon RE, Linteris GT (2009) Prediction of the burning rates of non-charring polymers. Combust Flame 156:1068–1083CrossRef Stoliarov SI, Crowley S, Lyon RE, Linteris GT (2009) Prediction of the burning rates of non-charring polymers. Combust Flame 156:1068–1083CrossRef
25.
Zurück zum Zitat Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the burning rates of charring polymers. Combust Flame 157:2024–2034CrossRef Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the burning rates of charring polymers. Combust Flame 157:2024–2034CrossRef
26.
Zurück zum Zitat Lyon RE, Safronava N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample response in nonisothermal analysis. Thermochim Acta 545:82–89CrossRef Lyon RE, Safronava N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample response in nonisothermal analysis. Thermochim Acta 545:82–89CrossRef
27.
Zurück zum Zitat Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New York, pp 125–190MATH Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New York, pp 125–190MATH
28.
Zurück zum Zitat Ceamanos J, Mastral JF, Millera A, Aldea ME (2002) Kinetics of pyrolysis of high density polyethylene. comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis 65:93–110CrossRef Ceamanos J, Mastral JF, Millera A, Aldea ME (2002) Kinetics of pyrolysis of high density polyethylene. comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis 65:93–110CrossRef
29.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, user’s guide. Technical report, NIST McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator, user’s guide. Technical report, NIST
30.
Zurück zum Zitat Austin PJ, Buch RR, Kashiwagi T (1998) Gasification of silicone fluids under esternal thermal radiation part I. gasification rate and global heat of gasification. Fire Mater 22:221–237CrossRef Austin PJ, Buch RR, Kashiwagi T (1998) Gasification of silicone fluids under esternal thermal radiation part I. gasification rate and global heat of gasification. Fire Mater 22:221–237CrossRef
31.
Zurück zum Zitat American Society for Testing and Materials, West Conshohocken, Pennsylvania (2007) ASTM E 1354–04a, Standard test method for heat and visible smoke release rates for materials and products using an oxygen combustion calorimeter American Society for Testing and Materials, West Conshohocken, Pennsylvania (2007) ASTM E 1354–04a, Standard test method for heat and visible smoke release rates for materials and products using an oxygen combustion calorimeter
Metadaten
Titel
Inferring and Propagating Kinetic Parameter Uncertainty for Condensed Phase Burning Models
verfasst von
Morgan C. Bruns
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2016
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-015-0457-2

Weitere Artikel der Ausgabe 1/2016

Fire Technology 1/2016 Zur Ausgabe