Skip to main content
Erschienen in: Fire Technology 1/2016

01.01.2016

Parameterization and Validation of Pyrolysis Models for Polymeric Materials

verfasst von: Stanislav I. Stoliarov, Jing Li

Erschienen in: Fire Technology | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A methodology for parameterization of pyrolysis models for polymeric solids is proposed. This methodology is based on a series of experiments including thermogravimetric analysis, differential scanning calorimetry, infrared radiation absorption measurement and controlled atmosphere, radiation-driven gasification experiments involving simultaneous sample mass and temperature monitoring. These experiments are interpreted using a transient pyrolysis model run in an infinitely fast (0D) and one-dimensional (1D) transport modes to derive a complete property set. This property set is subsequently validated by comparing the mass loss rate histories obtained from the gasification experiments to the model predictions. For a range of previously studied materials, these predictions were found to be, on average, within 10 to 20% of the experimental values. This manuscript provides an overview of this methodology, accompanied by examples of its application, identifies its imitations and suggests paths for future development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Poutsma ML (2003) Reexamination of the pyrolysis of polyethylene: data needs, free-radical mechanistic considerations, and thermochemical kinetic simulation of initial product-forming pathways. Macromolecules 36:8931–8957CrossRef Poutsma ML (2003) Reexamination of the pyrolysis of polyethylene: data needs, free-radical mechanistic considerations, and thermochemical kinetic simulation of initial product-forming pathways. Macromolecules 36:8931–8957CrossRef
2.
Zurück zum Zitat Li J, Stoliarov SI (2013) Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combust Flame 160:1287–1297CrossRef Li J, Stoliarov SI (2013) Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combust Flame 160:1287–1297CrossRef
3.
Zurück zum Zitat Li J, Gong J, Stoliarov SI (2014) Gasification experiments for pyrolysis model parameterization and validation. Int J Heat Mass Transf 77:738–744CrossRef Li J, Gong J, Stoliarov SI (2014) Gasification experiments for pyrolysis model parameterization and validation. Int J Heat Mass Transf 77:738–744CrossRef
4.
Zurück zum Zitat Li J, Stoliarov SI (2014) Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab 106:2–15CrossRef Li J, Stoliarov SI (2014) Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab 106:2–15CrossRef
6.
Zurück zum Zitat McKinnon MB, Stoliarov SI, Witkowski A (2013) Development of a pyrolysis model for corrugated cardboard. Combust Flame 160:2595–2607CrossRef McKinnon MB, Stoliarov SI, Witkowski A (2013) Development of a pyrolysis model for corrugated cardboard. Combust Flame 160:2595–2607CrossRef
7.
Zurück zum Zitat Semmes MR, Liu X, McKinnon MB, Stoliarov SI, Witkowski A (2014) A model for oxidative pyrolysis of corrugated cardboard. In: Proceedings of the eleventh international symposium on fire safety science Semmes MR, Liu X, McKinnon MB, Stoliarov SI, Witkowski A (2014) A model for oxidative pyrolysis of corrugated cardboard. In: Proceedings of the eleventh international symposium on fire safety science
8.
Zurück zum Zitat Stoliarov SI, Lyon RE (2008) Thermo-kinetic model of burning. Federal Aviation Administration Technical Note, DOT/FAA/AR-TN08/17. Federal Aviation Administration, Washington, DC Stoliarov SI, Lyon RE (2008) Thermo-kinetic model of burning. Federal Aviation Administration Technical Note, DOT/FAA/AR-TN08/17. Federal Aviation Administration, Washington, DC
9.
Zurück zum Zitat Stoliarov SI, Leventon IT, Lyon RE (2014) Two-dimensional model of burning for pyrolyzable solids. Fire Mater 38:391–408CrossRef Stoliarov SI, Leventon IT, Lyon RE (2014) Two-dimensional model of burning for pyrolyzable solids. Fire Mater 38:391–408CrossRef
10.
Zurück zum Zitat Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839CrossRef Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839CrossRef
11.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator (version 6) technical reference guide. Special Publication 1018-6. National Institute of Standards and Technology, Gaithersburg McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2014) Fire dynamics simulator (version 6) technical reference guide. Special Publication 1018-6. National Institute of Standards and Technology, Gaithersburg
12.
Zurück zum Zitat Henderson JB, Wiebelt JA, Tant MR (1985) A model for the thermal response of polymer composite materials with experimental verification. J Compos Mater 19:579–595CrossRef Henderson JB, Wiebelt JA, Tant MR (1985) A model for the thermal response of polymer composite materials with experimental verification. J Compos Mater 19:579–595CrossRef
13.
Zurück zum Zitat Vovelle C, Delfau JL, Reuillon M, Bransier J, Laraqui N (1987) Experimental and numerical study of the thermal degradation of PMMA. Combust Sci Technol 53:187–201CrossRef Vovelle C, Delfau JL, Reuillon M, Bransier J, Laraqui N (1987) Experimental and numerical study of the thermal degradation of PMMA. Combust Sci Technol 53:187–201CrossRef
14.
Zurück zum Zitat Di Blasi C (1993) Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis. Combust Sci Technol 90:315–340CrossRef Di Blasi C (1993) Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis. Combust Sci Technol 90:315–340CrossRef
15.
Zurück zum Zitat Staggs JEJ (2003) Heat and mass transport in developing chars. Polym Degrad Stab 82:297–307CrossRef Staggs JEJ (2003) Heat and mass transport in developing chars. Polym Degrad Stab 82:297–307CrossRef
16.
Zurück zum Zitat Stoliarov SI, Crowley S, Lyon RE, Linteris GT (2009) Prediction of the burning rates of non-charring polymers. Combust Flame 156:1068–1083CrossRef Stoliarov SI, Crowley S, Lyon RE, Linteris GT (2009) Prediction of the burning rates of non-charring polymers. Combust Flame 156:1068–1083CrossRef
17.
Zurück zum Zitat Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the burning rates of charring polymers. Combust Flame 157:2024–2034CrossRef Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the burning rates of charring polymers. Combust Flame 157:2024–2034CrossRef
18.
Zurück zum Zitat Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41:204–214CrossRef Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41:204–214CrossRef
19.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33:2599–2606. CrossRef Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33:2599–2606. CrossRef
21.
Zurück zum Zitat Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48:125–149CrossRef Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48:125–149CrossRef
22.
Zurück zum Zitat Rice OK (1967) Statistical mechanics, thermodynamics and kinetics. W. H. Freeman and Co., San Francisco Rice OK (1967) Statistical mechanics, thermodynamics and kinetics. W. H. Freeman and Co., San Francisco
23.
Zurück zum Zitat Lyon RE, Safronava N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample response in nonisothermal analysis. Thermochim Acta 545:82–89CrossRef Lyon RE, Safronava N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample response in nonisothermal analysis. Thermochim Acta 545:82–89CrossRef
24.
Zurück zum Zitat Stoliarov SI, Walters RN (2008) Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym Degrad Stab 93:422–427CrossRef Stoliarov SI, Walters RN (2008) Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym Degrad Stab 93:422–427CrossRef
25.
Zurück zum Zitat Siegel R , Howell J (2002) Thermal radiation heat transfer. Taylor & Francis, New York Siegel R , Howell J (2002) Thermal radiation heat transfer. Taylor & Francis, New York
26.
Zurück zum Zitat Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef
27.
Zurück zum Zitat Försth M, Roos A (2011) Absorptivity and Its dependence on heat source temperature and degree of thermal breakdown. Fire Mater 35:285–301CrossRef Försth M, Roos A (2011) Absorptivity and Its dependence on heat source temperature and degree of thermal breakdown. Fire Mater 35:285–301CrossRef
28.
Zurück zum Zitat Linteris G, Zammarano M, Wilthan B, Hanssen L (2012) Absorption and reflection of infrared radiation by polymers in fire-like environments. Fire Mater 36:537–553CrossRef Linteris G, Zammarano M, Wilthan B, Hanssen L (2012) Absorption and reflection of infrared radiation by polymers in fire-like environments. Fire Mater 36:537–553CrossRef
29.
Zurück zum Zitat Matsumoto T, Ono A (1995) Specific heat capacity and emissivity measurements of ribbon-shaped graphite using pulse current heating. Int J Thermophys 16:267–275CrossRef Matsumoto T, Ono A (1995) Specific heat capacity and emissivity measurements of ribbon-shaped graphite using pulse current heating. Int J Thermophys 16:267–275CrossRef
30.
Zurück zum Zitat Jiang F, de Ris JL, Khan MM (2009) Absorption of thermal energy in PMMA by In-depth radiation. Fire Saf J 44:106–112CrossRef Jiang F, de Ris JL, Khan MM (2009) Absorption of thermal energy in PMMA by In-depth radiation. Fire Saf J 44:106–112CrossRef
31.
Zurück zum Zitat ASTM Standard E1354-13 (2013) Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, West Conshohocken ASTM Standard E1354-13 (2013) Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, West Conshohocken
32.
Zurück zum Zitat Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, ChichesterCrossRef Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, ChichesterCrossRef
33.
Zurück zum Zitat Li J (2014) A multiscale approach to parameterization of burning models for polymeric materials. PhD dissertation, University of Maryland, College Park Li J (2014) A multiscale approach to parameterization of burning models for polymeric materials. PhD dissertation, University of Maryland, College Park
34.
Zurück zum Zitat Chaos M, Khan MM, Dorofeev SB (2013) Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc Combust Inst 34:2583–2590CrossRef Chaos M, Khan MM, Dorofeev SB (2013) Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc Combust Inst 34:2583–2590CrossRef
35.
Zurück zum Zitat Mhike W, Ferreira IVW, Li J, Stoliarov SI, Focke WW (2015) Flame retarding effect of graphite in rotationally molded polyethylene/graphite composites. J Appl Polym Sci 132:#41472 Mhike W, Ferreira IVW, Li J, Stoliarov SI, Focke WW (2015) Flame retarding effect of graphite in rotationally molded polyethylene/graphite composites. J Appl Polym Sci 132:#41472
Metadaten
Titel
Parameterization and Validation of Pyrolysis Models for Polymeric Materials
verfasst von
Stanislav I. Stoliarov
Jing Li
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2016
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-015-0490-1

Weitere Artikel der Ausgabe 1/2016

Fire Technology 1/2016 Zur Ausgabe