Skip to main content

2023 | OriginalPaper | Buchkapitel

Inferring Probabilistic Boolean Networks from Steady-State Gene Data Samples

verfasst von : Vytenis Šliogeris, Leandros Maglaras, Sotiris Moschoyiannis

Erschienen in: Complex Networks and Their Applications XI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Probabilistic Boolean Networks have been proposed for estimating the behaviour of dynamical systems as they combine rule-based modelling with uncertainty principles. Inferring PBNs directly from gene data is challenging however, especially when data is costly to collect and/or noisy, e.g., in the case of gene expression profile data. In this paper, we present a reproducible method for inferring PBNs directly from real gene expression data measurements taken when the system was at a steady state. The steady-state dynamics of PBNs is of special interest in the analysis of biological machinery. The proposed approach does not rely on reconstructing the state evolution of the network, which is computationally intractable for larger networks. We demonstrate the method on samples of real gene expression profiling data from a well-known study on metastatic melanoma. The pipeline is implemented using Python and we make it publicly available.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akutsu, T., et al.: Control of Boolean networks: hardness results and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670–679 (2007)MathSciNetCrossRefMATH Akutsu, T., et al.: Control of Boolean networks: hardness results and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670–679 (2007)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)MathSciNetCrossRefMATH Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Apostolopoulou, I., Marculescu, D.: Tractable learning and inference for large-scale probabilistic Boolean networks. IEEE Trans. Neur. Netw. Learn. Syst. 30(9) (2019) Apostolopoulou, I., Marculescu, D.: Tractable learning and inference for large-scale probabilistic Boolean networks. IEEE Trans. Neur. Netw. Learn. Syst. 30(9) (2019)
4.
Zurück zum Zitat Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)CrossRef Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)CrossRef
5.
Zurück zum Zitat Bittner, M., et al.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–40 (2000) Bittner, M., et al.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–40 (2000)
6.
Zurück zum Zitat Chatzaroulas, E., Sliogeris, V., Victori, P., Buffa, F.M., Moschoyiannis, S., Bauer, R.: A structural characterisation of the mitogen-activated protein kinase network in cancer. Symmetry 14(5) (2022) Chatzaroulas, E., Sliogeris, V., Victori, P., Buffa, F.M., Moschoyiannis, S., Bauer, R.: A structural characterisation of the mitogen-activated protein kinase network in cancer. Symmetry 14(5) (2022)
7.
Zurück zum Zitat Chen, Y.: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2(4), 364 (1997)CrossRef Chen, Y.: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2(4), 364 (1997)CrossRef
8.
Zurück zum Zitat Ching, W.K., Zhang, M.K.N., Akutsu, T.: An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics 23(12), 1511–1518 (2007)CrossRef Ching, W.K., Zhang, M.K.N., Akutsu, T.: An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics 23(12), 1511–1518 (2007)CrossRef
9.
Zurück zum Zitat Datta, A., Choudhary, A., Bittner, M.L., Dougherty, E.: External control in markovian genetic regulatory networks. Mach. Learn. 4, 52, 3614 – 3619 (2003) Datta, A., Choudhary, A., Bittner, M.L., Dougherty, E.: External control in markovian genetic regulatory networks. Mach. Learn. 4, 52, 3614 – 3619 (2003)
10.
Zurück zum Zitat Davidich, M., Bornholdt, S.: The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–77 (2008)MathSciNetCrossRefMATH Davidich, M., Bornholdt, S.: The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–77 (2008)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Fumia, H.F., Martins, M.L.: Boolean network model for cancer pathways: Predicting carcinogenesis and targeted therapy outcomes. PLoS ONE 8(7), e69008 (2013)CrossRef Fumia, H.F., Martins, M.L.: Boolean network model for cancer pathways: Predicting carcinogenesis and targeted therapy outcomes. PLoS ONE 8(7), e69008 (2013)CrossRef
12.
Zurück zum Zitat Gawad, C., Koh, W., Quake, S.: Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016)CrossRef Gawad, C., Koh, W., Quake, S.: Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016)CrossRef
13.
Zurück zum Zitat Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Gene. 10(524) (2019) Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Gene. 10(524) (2019)
14.
Zurück zum Zitat Karlsen, M.R., Moschoyiannis, S.: Evolution of control with learning classifier systems. Appl. Netw. Sci. 3(1), 1–30 (2018)CrossRef Karlsen, M.R., Moschoyiannis, S.: Evolution of control with learning classifier systems. Appl. Netw. Sci. 3(1), 1–30 (2018)CrossRef
15.
Zurück zum Zitat Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRef Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRef
16.
Zurück zum Zitat Kim, S., Dougherty, E., Bittner, M., Chen, Y., Sivakumar, K., Meltzer, P., Trent, J.: General nonlinear framework for the analysis of gene interaction via multivariate expression arrays. J. Biomed. Opt. 5, 411–24 (2000) Kim, S., Dougherty, E., Bittner, M., Chen, Y., Sivakumar, K., Meltzer, P., Trent, J.: General nonlinear framework for the analysis of gene interaction via multivariate expression arrays. J. Biomed. Opt. 5, 411–24 (2000)
17.
Zurück zum Zitat Kim, S., Dougherty, E.R., Chen, Y., Bittner, M., Suh, E.: Can markov chain models mimic biological regulation? J. Biol. Syst. 10 (2003) Kim, S., Dougherty, E.R., Chen, Y., Bittner, M., Suh, E.: Can markov chain models mimic biological regulation? J. Biol. Syst. 10 (2003)
18.
Zurück zum Zitat Kobayashi, K., Hiraishi, K.: Design of probabilistic Boolean networks based on network structure and steady-state probabilities. IEEE Trans. Neur. Netw. Learn. Syst. 28(8), 1966–1971 (2017)MathSciNetCrossRef Kobayashi, K., Hiraishi, K.: Design of probabilistic Boolean networks based on network structure and steady-state probabilities. IEEE Trans. Neur. Netw. Learn. Syst. 28(8), 1966–1971 (2017)MathSciNetCrossRef
19.
Zurück zum Zitat Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRef Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRef
20.
Zurück zum Zitat Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.: Revealing strengths and weaknesses of methods for gene network inference. Proc. Nat. Acad. Sci. 107(14), 6286–6291 (2010)CrossRef Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.: Revealing strengths and weaknesses of methods for gene network inference. Proc. Nat. Acad. Sci. 107(14), 6286–6291 (2010)CrossRef
21.
Zurück zum Zitat Matsumoto, H., et al.: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33(15), 2314–2321 (2017)CrossRef Matsumoto, H., et al.: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33(15), 2314–2321 (2017)CrossRef
22.
Zurück zum Zitat Melkman, A.A., Cheng, X., Ching, W.K., Akutsu, T.: Identifying a probabilistic Boolean threshold network from samples. IEEE Trans. Neur. Netw. Learn. Syst. 29(4), 869–881 (2018)CrossRef Melkman, A.A., Cheng, X., Ching, W.K., Akutsu, T.: Identifying a probabilistic Boolean threshold network from samples. IEEE Trans. Neur. Netw. Learn. Syst. 29(4), 869–881 (2018)CrossRef
23.
Zurück zum Zitat Mizera, A., Pang, J., Yuan, Q.: Assa-pbn: An approximate steady-state analyser of probabilistic boolean networks. In: Automated Technology for Verification and Analysis. Springer International Publishing, Cham, pp. 214–220 (2015) Mizera, A., Pang, J., Yuan, Q.: Assa-pbn: An approximate steady-state analyser of probabilistic boolean networks. In: Automated Technology for Verification and Analysis. Springer International Publishing, Cham, pp. 214–220 (2015)
24.
Zurück zum Zitat Moschoyiannis, S., Shields, M.: A set-theoretic framework for component composition. Fundamenta Informaticae 59(4), 373–396 (2004)MathSciNetMATH Moschoyiannis, S., Shields, M.: A set-theoretic framework for component composition. Fundamenta Informaticae 59(4), 373–396 (2004)MathSciNetMATH
25.
Zurück zum Zitat Pal, R., Datta, A., Dougherty, E.R.: Optimal infinite-horizon control for probabilistic Boolean networks. IEEE Trans. Sign. Process. 54(6), 2375–2387 (2006)CrossRefMATH Pal, R., Datta, A., Dougherty, E.R.: Optimal infinite-horizon control for probabilistic Boolean networks. IEEE Trans. Sign. Process. 54(6), 2375–2387 (2006)CrossRefMATH
26.
Zurück zum Zitat Papagiannis, G., Moschoyiannis, S.: Learning to control random Boolean networks: A deep reinforcement learning approach. In: Complex Networks 2019, Vol. 881. Springer, Cham, pp. 721–734 (2019) Papagiannis, G., Moschoyiannis, S.: Learning to control random Boolean networks: A deep reinforcement learning approach. In: Complex Networks 2019, Vol. 881. Springer, Cham, pp. 721–734 (2019)
27.
Zurück zum Zitat Papagiannis, G., Moschoyiannis, S.: Deep reinforcement learning for control of probabilistic Boolean networks. In: Complex Networks 2020, Vol. 944. Springer, pp. 361–371 (2020) Papagiannis, G., Moschoyiannis, S.: Deep reinforcement learning for control of probabilistic Boolean networks. In: Complex Networks 2020, Vol. 944. Springer, pp. 361–371 (2020)
28.
Zurück zum Zitat Savvopoulos, S., Moschoyiannis, S.: Impact of removing nodes on the controllability of complex networks. In: Complex Networks (2017) Savvopoulos, S., Moschoyiannis, S.: Impact of removing nodes on the controllability of complex networks. In: Complex Networks (2017)
29.
Zurück zum Zitat Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM (2010) Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM (2010)
30.
Zurück zum Zitat Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–74 (2002)CrossRef Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–74 (2002)CrossRef
31.
Zurück zum Zitat Shmulevich, I., et al.: Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genom. 4(6), 601–608 (2003)CrossRef Shmulevich, I., et al.: Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genom. 4(6), 601–608 (2003)CrossRef
32.
Zurück zum Zitat Silescu, A., Honavar, V.: Temporal Boolean network models of genetic networks and their inference from gene expression time series. Compl. Syst. 13(2001), 61–78 (2001)MathSciNetMATH Silescu, A., Honavar, V.: Temporal Boolean network models of genetic networks and their inference from gene expression time series. Compl. Syst. 13(2001), 61–78 (2001)MathSciNetMATH
33.
Zurück zum Zitat Sirin, U., Polat, F., Alhajj, R.: Employing Batch Reinforcement Learning to Control Gene Regulation Without Explicitly Constructing Gene Regulatory Networks, pp. 2042–2048 (2013) Sirin, U., Polat, F., Alhajj, R.: Employing Batch Reinforcement Learning to Control Gene Regulation Without Explicitly Constructing Gene Regulatory Networks, pp. 2042–2048 (2013)
34.
Zurück zum Zitat Velarde, C., Rubio-Escudero, C., Romero-Zaliz, R.: Boolean networks: a study on microarray data discretization. In: ESTYLF08, Cuencas Mineras (Mieres-Langreo), pp. 17–19 (2008) Velarde, C., Rubio-Escudero, C., Romero-Zaliz, R.: Boolean networks: a study on microarray data discretization. In: ESTYLF08, Cuencas Mineras (Mieres-Langreo), pp. 17–19 (2008)
36.
Zurück zum Zitat Wu, Y., Shen, T.: Policy iteration algorithm for optimal control of stochastic logical dynamical systems. IEEE Trans. Neur. Netw. Learn. Syst. 29(5), 2031–2036 (2019)MathSciNetCrossRef Wu, Y., Shen, T.: Policy iteration algorithm for optimal control of stochastic logical dynamical systems. IEEE Trans. Neur. Netw. Learn. Syst. 29(5), 2031–2036 (2019)MathSciNetCrossRef
37.
Zurück zum Zitat Zhang, K., Johansson, K.H.: Efficient verification of observability and reconstructibility for large boolean control networks with special structures. IEEE Trans. Autom. Contr. 65(12), 5144–5158 (2020)MathSciNetCrossRefMATH Zhang, K., Johansson, K.H.: Efficient verification of observability and reconstructibility for large boolean control networks with special structures. IEEE Trans. Autom. Contr. 65(12), 5144–5158 (2020)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Zhu, Q., Liu, Y., Lu, J., Cao, J.: Controllability and observability of Boolean control networks via sampled-data control. IEEE Trans. Control. Netw. Syst. 6(4), 1291–1301 (2019)MathSciNetCrossRefMATH Zhu, Q., Liu, Y., Lu, J., Cao, J.: Controllability and observability of Boolean control networks via sampled-data control. IEEE Trans. Control. Netw. Syst. 6(4), 1291–1301 (2019)MathSciNetCrossRefMATH
Metadaten
Titel
Inferring Probabilistic Boolean Networks from Steady-State Gene Data Samples
verfasst von
Vytenis Šliogeris
Leandros Maglaras
Sotiris Moschoyiannis
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-21127-0_24

Premium Partner