Skip to main content
Erschienen in: Journal of Electronic Materials 5/2024

06.03.2024 | Original Research Article

Influence of Net Doping Concentration on Carrier Lifetime in 4H-SiC Substrates

verfasst von: Hongyu Shao, Xianglong Yang, Desheng Wang, Xiaomeng Li, Xiufang Chen, Guojie Hu, Huadong Li, Xixi Xiong, Xuejian Xie, Xiaobo Hu, Xiangang Xu

Erschienen in: Journal of Electronic Materials | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lightly nitrogen-doped (N-doped) and vanadium-doped (V-doped) 4H-SiC single crystals grown by physical vapor transport were used to investigate the effect of net doping concentration on carrier lifetime. The carrier lifetime in N-doped and V-doped 4H-SiC substrates was measured using microwave photoconductance decay. The resistivity mapping of the 4H-SiC wafers was measured using a contactless eddy current to reveal the relationship between resistivity and net doping concentration. Raman spectroscopy and secondary ion mass spectroscopy were recorded to determine the carrier concentration and impurity distribution. The results show that the net N doping concentration, expressed by ND − NA (donor nitrogen compensated by acceptor boron and aluminum), was responsible for carrier lifetime in N-doped 4H-SiC substrate. For V-doped 4H-SiC substrates, the experimental details clearly demonstrated that the carrier time was affected not only by V concentration (NV), but also by the shallow level impurity concentration. When ND − NA > NV, the net V1 doping concentration expressed by (ND – NA) − NV determined the carrier lifetime. The net V2 doping concentration expressed by NV − (ND − NA) determined the carrier lifetime when NV > ND − NA, and the carrier lifetime decreased with increasing net V2 impurity concentration. The maximum carrier lifetime was obtained when ND − NA ≈ NV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.F. Davis, J.W. Palmour and J.A. Edmond, in International Technical Digest on Electron Devices (1990), p. 785–788. R.F. Davis, J.W. Palmour and J.A. Edmond, in International Technical Digest on Electron Devices (1990), p. 785–788.
2.
Zurück zum Zitat J.B. Casady and R.W. Johnson, Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid State Electron. 39, 1409–1422 (1996).CrossRef J.B. Casady and R.W. Johnson, Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid State Electron. 39, 1409–1422 (1996).CrossRef
3.
Zurück zum Zitat D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, and W.J. Choyke, SiC Boule Growth by Sublimation Vapor Transport. J. Cryst. Growth 109, 17–23 (1991).CrossRef D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, and W.J. Choyke, SiC Boule Growth by Sublimation Vapor Transport. J. Cryst. Growth 109, 17–23 (1991).CrossRef
4.
Zurück zum Zitat H. Morkoc, S.S. Strite, G.B. Gao, M.E. Lin, and M.B. Burns, Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor Device Technologies. J. Appl. Phys. 76, 1363–1398 (1994).CrossRef H. Morkoc, S.S. Strite, G.B. Gao, M.E. Lin, and M.B. Burns, Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor Device Technologies. J. Appl. Phys. 76, 1363–1398 (1994).CrossRef
5.
Zurück zum Zitat J.L. Hudgins, G.S. Simin, E. Santi, and M.A. Khan, An Assessment of Wide Bandgap Semiconductors for Power Devices. IEEE Trans. Power Electron. 18, 907–914 (2003).CrossRef J.L. Hudgins, G.S. Simin, E. Santi, and M.A. Khan, An Assessment of Wide Bandgap Semiconductors for Power Devices. IEEE Trans. Power Electron. 18, 907–914 (2003).CrossRef
6.
Zurück zum Zitat R.L. Myers-Ward, B.L. Vanmil, K.K. Lew, P.B. Klein, E.R. Glaser, J.D. Caldwell, M.A. Mastro, L. Wang, P. Zhao, and C. Eddy, Investigation of Deep Levels in Nitrogen Doped 4H–SiC Epitaxial Layers Grown on 4° and 8° Off-Axis Substrates. J. Appl. Phys. 108, 299 (2010).CrossRef R.L. Myers-Ward, B.L. Vanmil, K.K. Lew, P.B. Klein, E.R. Glaser, J.D. Caldwell, M.A. Mastro, L. Wang, P. Zhao, and C. Eddy, Investigation of Deep Levels in Nitrogen Doped 4H–SiC Epitaxial Layers Grown on 4° and 8° Off-Axis Substrates. J. Appl. Phys. 108, 299 (2010).CrossRef
7.
Zurück zum Zitat T. Miyazawa, T. Tawara, R. Takanashi, and H. Tsuchida, Vanadium Doping in 4H-SiC Epitaxial Growth for Carrier Lifetime Control. Appl. Phys. Express 9, 111301 (2016).CrossRef T. Miyazawa, T. Tawara, R. Takanashi, and H. Tsuchida, Vanadium Doping in 4H-SiC Epitaxial Growth for Carrier Lifetime Control. Appl. Phys. Express 9, 111301 (2016).CrossRef
8.
Zurück zum Zitat T. Miyazawa, T. Tawara and H. Tsuchida, in Trans Tech Publications (2017), p. 67–70. T. Miyazawa, T. Tawara and H. Tsuchida, in Trans Tech Publications (2017), p. 67–70.
9.
Zurück zum Zitat K. Yang, X.F. Chen, X.L. Yang, Y. Peng, and X.G. Xu, Growth of High Purity Semi-Insulting 4H-SiC Single Crystals. Rengong Jingti Xuebao 43, 3055–3057 (2014). K. Yang, X.F. Chen, X.L. Yang, Y. Peng, and X.G. Xu, Growth of High Purity Semi-Insulting 4H-SiC Single Crystals. Rengong Jingti Xuebao 43, 3055–3057 (2014).
10.
Zurück zum Zitat D. Hofmann, R. Eckstein, M. Klbl, Y. Makarov, and J. Vlkl, SiC-Bulk Growth by Physical-Vapor Transport and Its Global Modelling. J. Cryst. Growth 174, 669–674 (1997).CrossRef D. Hofmann, R. Eckstein, M. Klbl, Y. Makarov, and J. Vlkl, SiC-Bulk Growth by Physical-Vapor Transport and Its Global Modelling. J. Cryst. Growth 174, 669–674 (1997).CrossRef
11.
Zurück zum Zitat Z. Hao, Chen, and He, A New Lifetime Measurement Instrument for Minority Carrier Based on Microwave Photoconductivity Decay Technique. Autom. Inf. Eng. (2011). Z. Hao, Chen, and He, A New Lifetime Measurement Instrument for Minority Carrier Based on Microwave Photoconductivity Decay Technique. Autom. Inf. Eng. (2011).
12.
Zurück zum Zitat Q. Li, A.Y. Polyakov, M. Skowronski, E.K. Sanchez, M.J. Loboda, M.A. Fanton, T. Bogart, and R.D. Gamble, Nonuniformities of Electrical Resistivity in Undoped 6H-SiC Wafers. J. Appl. Phys. 97, 113705 (2005).CrossRef Q. Li, A.Y. Polyakov, M. Skowronski, E.K. Sanchez, M.J. Loboda, M.A. Fanton, T. Bogart, and R.D. Gamble, Nonuniformities of Electrical Resistivity in Undoped 6H-SiC Wafers. J. Appl. Phys. 97, 113705 (2005).CrossRef
13.
Zurück zum Zitat J.Y. Yu, X.L. Yang, Y. Peng, X.F. Chen, X.B. Hu, and X.G. Xu, Inhomogeneity of Minority Carrier Lifetime in 4H-SiC Substrates. Crystallogr. Rep. 65, 1231–1236 (2020).CrossRef J.Y. Yu, X.L. Yang, Y. Peng, X.F. Chen, X.B. Hu, and X.G. Xu, Inhomogeneity of Minority Carrier Lifetime in 4H-SiC Substrates. Crystallogr. Rep. 65, 1231–1236 (2020).CrossRef
14.
Zurück zum Zitat A. Henry, J. Hassan, J.P. Bergman, C. Hallin, and E. Janzen, Thick Silicon Carbide Homoepitaxial Layers Grown by CVD Techniques. Chem. Vap. Depos. 12, 475–482 (2010).CrossRef A. Henry, J. Hassan, J.P. Bergman, C. Hallin, and E. Janzen, Thick Silicon Carbide Homoepitaxial Layers Grown by CVD Techniques. Chem. Vap. Depos. 12, 475–482 (2010).CrossRef
15.
Zurück zum Zitat S. Nakashima, T. Kitamura, T. Kato, K. Kojima, R. Kosugi, H. Okumura, H. Tsuchida, and M. Ito, Determination of Free Carrier Density in the Low Doping Regime of 4H-SiC by Raman Scattering. Appl. Phys. Lett. 93, 3547 (2008).CrossRef S. Nakashima, T. Kitamura, T. Kato, K. Kojima, R. Kosugi, H. Okumura, H. Tsuchida, and M. Ito, Determination of Free Carrier Density in the Low Doping Regime of 4H-SiC by Raman Scattering. Appl. Phys. Lett. 93, 3547 (2008).CrossRef
16.
Zurück zum Zitat O. Kordina, J.P. Bergman, A. Henry, and E. Janzen, Long Minority Carrier Lifetimes in 6H SiC Grown by Chemical Vapor Deposition. Appl. Phys. Lett. 66, 189–189 (1995).CrossRef O. Kordina, J.P. Bergman, A. Henry, and E. Janzen, Long Minority Carrier Lifetimes in 6H SiC Grown by Chemical Vapor Deposition. Appl. Phys. Lett. 66, 189–189 (1995).CrossRef
17.
Zurück zum Zitat M. Bickermann, B.M. Epelbaum, D. Hofmann, T.L. Straubinger, and A. Winnacker, Incorporation of Boron and Vanadium During PVT Growth of 6H-SiC Crystals. J. Cryst. Growth 233, 211–218 (2001).CrossRef M. Bickermann, B.M. Epelbaum, D. Hofmann, T.L. Straubinger, and A. Winnacker, Incorporation of Boron and Vanadium During PVT Growth of 6H-SiC Crystals. J. Cryst. Growth 233, 211–218 (2001).CrossRef
18.
Zurück zum Zitat J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C. Glass, G. Augustine, and R.H. Hopkins, On the Compensation Mechanism in High-Resistivity 6H-SiC Doped with Vanadium. J. Appl. Phys. 78, 3839–3842 (1995).CrossRef J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C. Glass, G. Augustine, and R.H. Hopkins, On the Compensation Mechanism in High-Resistivity 6H-SiC Doped with Vanadium. J. Appl. Phys. 78, 3839–3842 (1995).CrossRef
19.
Zurück zum Zitat L.N. Ning, X.B. HU, X.F. Chen, J. Li, Y.M. Wang, S.Z. Jiang and X.G. Xu, Growth of Semi-insulating 6H-SiC Single Crystal. J. Semicond. 4 (2007). L.N. Ning, X.B. HU, X.F. Chen, J. Li, Y.M. Wang, S.Z. Jiang and X.G. Xu, Growth of Semi-insulating 6H-SiC Single Crystal. J. Semicond. 4 (2007).
20.
Zurück zum Zitat M. Bickermann, D. Hofmann, T.L. Straubinger, R. Weingärtner and A. Winnacker, in Trans Tech Publications (2003), p. 51–54. M. Bickermann, D. Hofmann, T.L. Straubinger, R. Weingärtner and A. Winnacker, in Trans Tech Publications (2003), p. 51–54.
21.
Zurück zum Zitat L. Ning, Z. Feng, Y. Wang, K. Zhang, Z. Feng, and X. Xu, Vanadium-Doped Semi-insulating 6H-SiC for Microwave Power Device Applications. Mater. Sci. Technol. 025, 102–104 (2009). L. Ning, Z. Feng, Y. Wang, K. Zhang, Z. Feng, and X. Xu, Vanadium-Doped Semi-insulating 6H-SiC for Microwave Power Device Applications. Mater. Sci. Technol. 025, 102–104 (2009).
22.
Zurück zum Zitat X.Q. Wang, Y. Hong, H. Wu, F. Feng, J.M. Hao and R.Y. Yan, Study on Resistivity Uniformity of Semi-insulating SiC Single Crystal. Semicond. Technol. 4 (2010). X.Q. Wang, Y. Hong, H. Wu, F. Feng, J.M. Hao and R.Y. Yan, Study on Resistivity Uniformity of Semi-insulating SiC Single Crystal. Semicond. Technol. 4 (2010).
23.
Zurück zum Zitat M.F. Macmillan, W. Mitchel, J. Blevins, G. Landis, J. Daniel, R.S. Sandhu, G. Chung, M. Spaulding, T.F. Zoes and E. Emorhokpor, in International Conference on Compound Semiconductor Manufacturing Technology (2008). M.F. Macmillan, W. Mitchel, J. Blevins, G. Landis, J. Daniel, R.S. Sandhu, G. Chung, M. Spaulding, T.F. Zoes and E. Emorhokpor, in International Conference on Compound Semiconductor Manufacturing Technology (2008).
24.
Zurück zum Zitat X. Wang, Y. Hong, A. Zhang, B. Feng, J. Hao, and R. Yan, SEM Secondary Electron Imaging in the V-Doped SiC Growth by PVT. Semicond. Technol. 35, 317–319 (2010). X. Wang, Y. Hong, A. Zhang, B. Feng, J. Hao, and R. Yan, SEM Secondary Electron Imaging in the V-Doped SiC Growth by PVT. Semicond. Technol. 35, 317–319 (2010).
25.
Zurück zum Zitat W. Huang, Z.Z. Chen, S.H. Chang, Z.Z. Li, and E.W. Shi, Analysis of Donor-Acceptor Pairs and Titanium Related Luminescence in Different Compensated 6H-SiC Single Crystals. Mater. Sci. Eng. B-Adv. 170, 139–142 (2010).CrossRef W. Huang, Z.Z. Chen, S.H. Chang, Z.Z. Li, and E.W. Shi, Analysis of Donor-Acceptor Pairs and Titanium Related Luminescence in Different Compensated 6H-SiC Single Crystals. Mater. Sci. Eng. B-Adv. 170, 139–142 (2010).CrossRef
26.
Zurück zum Zitat K.J. Kim, K.Y. Lim, Y.W. Kim, and H.C. Kim, Temperature Dependence of Electrical Resistivity (4–300K) in Aluminum- and Boron-Doped SiC Ceramics. J. Am. Ceram. Soc. 96, 2525–2530 (2013).CrossRef K.J. Kim, K.Y. Lim, Y.W. Kim, and H.C. Kim, Temperature Dependence of Electrical Resistivity (4–300K) in Aluminum- and Boron-Doped SiC Ceramics. J. Am. Ceram. Soc. 96, 2525–2530 (2013).CrossRef
Metadaten
Titel
Influence of Net Doping Concentration on Carrier Lifetime in 4H-SiC Substrates
verfasst von
Hongyu Shao
Xianglong Yang
Desheng Wang
Xiaomeng Li
Xiufang Chen
Guojie Hu
Huadong Li
Xixi Xiong
Xuejian Xie
Xiaobo Hu
Xiangang Xu
Publikationsdatum
06.03.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 5/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10959-4

Weitere Artikel der Ausgabe 5/2024

Journal of Electronic Materials 5/2024 Zur Ausgabe

Neuer Inhalt