Skip to main content
Erschienen in: Social Network Analysis and Mining 1/2014

01.12.2014 | Original Article

Influence of vaccination strategies and topology on the herd immunity of complex networks

verfasst von: Gnana Thedchanamoorthy, Mahendra Piraveenan, Shahadat Uddin, Upul Senanayake

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is well known that non-vaccinated individuals may be protected from contacting a disease by vaccinated individuals in a social network through community protection (herd immunity). Such protection greatly depends on the underlying topology of the social network, the strategy used in selecting individuals for vaccination, and the interplay between these. In this paper, we analyse how the interplay between topology and immunization strategies influences the herd immunity of social networks. First, we introduce an area under curve measure which can quantify the levels of herd immunity in a social network. Then, using this measure, we analyse the above mentioned interplay in three ways: (1) by comparing vaccination strategies across topologies, (2) by analysing the influence of selected topological metrics, and (3) by considering the influence of network growth on herd immunity. For qualitative comparison, we consider three classical topologies (scale-free, random, and small-world) and three vaccination strategies (natural, random, and betweenness-based immunization). We show that betweenness-based vaccination is the best strategy of immunization in static networks, regardless of topology, but its prominence over other strategies diminishes in dynamically growing topologies. We find that the network features that lead to ‘small-worldness’ in networks (low diameter and high clustering) discourage herd immunity, regardless of the vaccination strategy, while preferential mixing (high assortativity) encourages it. In terms of growth, we demonstrate that herd immunity of random networks actually increases with growth, if the proportion of survivors to a secondary infection is considered, while the community protection in scale-free and small-world networks decreases with growth. Our work highlights the complex balance between social network structure and vaccination strategies in influencing community protection, and contributes a numerical measure to quantify this.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We also generated small-world networks with rewiring probabilities of \(p=0.02\) to compare with the results of Ferrari et al. (2006), since this was the value used by them. However, this value, as explained by Watts and Strogatz, is too close to the regular graph extreme, and the networks generated, therefore, show relatively high characteristic path length. The value \(p=0.5\) is in the middle of the rewiring probability range, between the regular extreme and the random extreme, and we found, therefore, that the small-world networks generated with this value better represent the small-world characteristics of high clustering coefficient and low characteristic path length. The results in terms of herd immunity were qualitatively similar for both values of \(p\), in any case.
 
2
calculated by considering the difference as a percentage of the smaller value.
 
3
Since high degree assortativity means all nodes must connect to other nodes with similar degrees to themselves, disconnected lattices tend to form when assortativity must be increased while degree distribution is preserved.
 
4
This means that in a network of size \(N\) = 5,000, we considered \(r=250\) and \(r=500\) as the cut-off ranks.
 
5
Note well here that we are discussing this in terms of percentages of people infected, not actual numbers. Any growth is not likely to result in reducing the numbers infected, regardless of the network structure.
 
Literatur
Zurück zum Zitat Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefMATH Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefMATH
Zurück zum Zitat Anderson RM, May RM (1990) Immunization and herd-immunity. Lancet 335(8690):641–645CrossRef Anderson RM, May RM (1990) Immunization and herd-immunity. Lancet 335(8690):641–645CrossRef
Zurück zum Zitat Bailey N (1957) The mathematical theory of epidemics, 1st edn. Griffin, London Bailey N (1957) The mathematical theory of epidemics, 1st edn. Griffin, London
Zurück zum Zitat Barabási AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:50–59CrossRef Barabási AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:50–59CrossRef
Zurück zum Zitat Barabási AL, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Phys A 281:69–77CrossRef Barabási AL, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Phys A 281:69–77CrossRef
Zurück zum Zitat Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press, OxfordCrossRef Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press, OxfordCrossRef
Zurück zum Zitat Ferrari MJ, Bansal S, Meyers LA, Bjørnstad ON (2006) Network frailty and the geometry of herd immunity. Proc Biol Sci/R Soc 273(1602):2743–2748. doi:10.1098/rspb.2006.3636 Ferrari MJ, Bansal S, Meyers LA, Bjørnstad ON (2006) Network frailty and the geometry of herd immunity. Proc Biol Sci/R Soc 273(1602):2743–2748. doi:10.​1098/​rspb.​2006.​3636
Zurück zum Zitat Freeman L (1979) Centrality in social networks: conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman L (1979) Centrality in social networks: conceptual clarification. Soc Netw 1(3):215–239CrossRef
Zurück zum Zitat Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41CrossRef
Zurück zum Zitat Hanley JA, Mcneil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36CrossRef Hanley JA, Mcneil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36CrossRef
Zurück zum Zitat Kepes F (ed) (2007) Biological networks. World Scientific, Singapore Kepes F (ed) (2007) Biological networks. World Scientific, Singapore
Zurück zum Zitat Meyers LA (2006) Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull Am Math Soc 44:63–87CrossRefMathSciNet Meyers LA (2006) Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull Am Math Soc 44:63–87CrossRefMathSciNet
Zurück zum Zitat Meyers LA, Newman MEJ, Martin M, Schrag S (2003) Applying network theory to epidemics: control measures for mycoplasma pneumoniae outbreaks. Emerg Infect Dis 9(2):204–210 Meyers LA, Newman MEJ, Martin M, Schrag S (2003) Applying network theory to epidemics: control measures for mycoplasma pneumoniae outbreaks. Emerg Infect Dis 9(2):204–210
Zurück zum Zitat Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC (2005) Network theory and sars: predicting outbreak diversity. J Theor Biol 232:71–81CrossRefMathSciNet Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC (2005) Network theory and sars: predicting outbreak diversity. J Theor Biol 232:71–81CrossRefMathSciNet
Zurück zum Zitat Meyers LA, Newman MEJ, Pourbohloul B (2006) Predicting epidemics on directed contact networks. J Theor Biol 240:400–418CrossRefMathSciNet Meyers LA, Newman MEJ, Pourbohloul B (2006) Predicting epidemics on directed contact networks. J Theor Biol 240:400–418CrossRefMathSciNet
Zurück zum Zitat Moore C, Newman MEJ (2000) Epidemics and percolation in small-world networks. Phys Rev E 61:5678–5682CrossRef Moore C, Newman MEJ (2000) Epidemics and percolation in small-world networks. Phys Rev E 61:5678–5682CrossRef
Zurück zum Zitat Newman MEJ (2002a) Assortative mixing in networks. Phys Rev Lett 89(20):208–701 Newman MEJ (2002a) Assortative mixing in networks. Phys Rev Lett 89(20):208–701
Zurück zum Zitat Newman MEJ (2002b) The spread of epidemic disease on networks. Phys Rev E 66(1):016128 Newman MEJ (2002b) The spread of epidemic disease on networks. Phys Rev E 66(1):016128
Zurück zum Zitat Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67(2):026126 Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67(2):026126
Zurück zum Zitat Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model. Phys Rev E 60:7332–7342CrossRef Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model. Phys Rev E 60:7332–7342CrossRef
Zurück zum Zitat Piraveenan M, Thedchanamoorthy G, Uddin S, Chung KSK (2013) Quantifying topological robustness of networks under sustained targeted attacks. Soc Netw Anal Min 1–14 Piraveenan M, Thedchanamoorthy G, Uddin S, Chung KSK (2013) Quantifying topological robustness of networks under sustained targeted attacks. Soc Netw Anal Min 1–14
Zurück zum Zitat Sjoberg M, Albrecston B, Hjalten J (2000) Truncated power laws: a tool for understanding aggregation patterns in animals. Ecol Lett 3:90–94CrossRef Sjoberg M, Albrecston B, Hjalten J (2000) Truncated power laws: a tool for understanding aggregation patterns in animals. Ecol Lett 3:90–94CrossRef
Zurück zum Zitat Solé RV, Valverde S (2004) Information theory of complex networks: on evolution and architectural constraints. In: Ben-Naim E, Frauenfelder H, Toroczkai Z (eds) Complex networks, vol 650. Lecture notes in physics. Springer, New York Solé RV, Valverde S (2004) Information theory of complex networks: on evolution and architectural constraints. In: Ben-Naim E, Frauenfelder H, Toroczkai Z (eds) Complex networks, vol 650. Lecture notes in physics. Springer, New York
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef
Zurück zum Zitat Zhou S, Mondragón RJ (2003) Towards modelling the internet topology—the interactive growth model. Phys Rev E 67(026):126 Zhou S, Mondragón RJ (2003) Towards modelling the internet topology—the interactive growth model. Phys Rev E 67(026):126
Zurück zum Zitat Zhou S, Mondragón RJ (2004) The rich-club phenomenon in the internet topology. IEEE Commun Lett 8:180–182CrossRef Zhou S, Mondragón RJ (2004) The rich-club phenomenon in the internet topology. IEEE Commun Lett 8:180–182CrossRef
Metadaten
Titel
Influence of vaccination strategies and topology on the herd immunity of complex networks
verfasst von
Gnana Thedchanamoorthy
Mahendra Piraveenan
Shahadat Uddin
Upul Senanayake
Publikationsdatum
01.12.2014
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2014
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-014-0213-5

Weitere Artikel der Ausgabe 1/2014

Social Network Analysis and Mining 1/2014 Zur Ausgabe

Premium Partner