Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2018

06.06.2018

Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes

verfasst von: Mahmoud Amirsalehi, Masoud Askari

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, V, Co-codoped TiO2(B) samples are synthesized through a hydrothermal method, and used as negative electrode materials for lithium ion batteries. The amount of dopants is varied in order to investigate their influence on electrochemical properties. The formation of V, Co-codoped TiO2(B) nanobelts with widths of 20 and 60 nm is demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma–optical emission spectrometry and field-emission scanning electron microscopy analyses. In addition, the electrochemical properties of the samples are tested by cyclic voltammetry, charging/discharging, and cyclic performance techniques. Compared to other samples, TiO2(B) nanobelts codoped with 2.5 wt% Co–2.5 wt% V, shows the best cycling performance, and exhibits the first high capacity of 264.86 mAh g−1 [x = 0.79, LiXTiO2(B)] at a rate of 0.5 C due to the improved Li+ diffusion and electronic conductivity, induced by crystal defects and oxygen vacancy. This electrode demonstrates excellent cyclability and has more than 96% capacity even after 50 cycles. It is concluded that the concentration of dopants in the TiO2(B) structure plays an effective role in improving the electrochemical performance of electrodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Chen, I. Belharouak, Y.K. Sun, K. Amine, Titanium-based anode materials for safe lithium-ion batteries. Adv. Func. Mater. 23(8), 959–969 (2013)CrossRef Z. Chen, I. Belharouak, Y.K. Sun, K. Amine, Titanium-based anode materials for safe lithium-ion batteries. Adv. Func. Mater. 23(8), 959–969 (2013)CrossRef
2.
Zurück zum Zitat L. Xiao, M. Cao, D. Mei, Y. Guo, L. Yao, D. Qu, B. Deng, Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 238, 197–202 (2013)CrossRef L. Xiao, M. Cao, D. Mei, Y. Guo, L. Yao, D. Qu, B. Deng, Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 238, 197–202 (2013)CrossRef
3.
Zurück zum Zitat X. Yan, Y. Zhang, K. Zhu, Y. Gao, D. Zhang, G. Chen et al., Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. J. Power Sources 246, 95–102 (2014)CrossRef X. Yan, Y. Zhang, K. Zhu, Y. Gao, D. Zhang, G. Chen et al., Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. J. Power Sources 246, 95–102 (2014)CrossRef
4.
Zurück zum Zitat K. Zhang, J. Shen, Y. Zhang, J. Zhang, C. Wei, X. Ma, Controlled-fabrication, morphology formation mechanism of TiO2-B nanobelts with NiO-doping. Mater. Design 88, 713–719 (2015)CrossRef K. Zhang, J. Shen, Y. Zhang, J. Zhang, C. Wei, X. Ma, Controlled-fabrication, morphology formation mechanism of TiO2-B nanobelts with NiO-doping. Mater. Design 88, 713–719 (2015)CrossRef
5.
Zurück zum Zitat N. Takami, Y. Harada, T. Iwasaki, K. Hoshina, Y. Yoshida, Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 273, 923–930 (2015)CrossRef N. Takami, Y. Harada, T. Iwasaki, K. Hoshina, Y. Yoshida, Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 273, 923–930 (2015)CrossRef
6.
Zurück zum Zitat Y. Furuya, W. Zhao, M. Unno, H. Noguchi, The electrochemical properties of low-crystallinity TiO2(B)-carbon composite as an anode material in lithium ion battery. Electrochim. Acta 136, 266–273 (2014)CrossRef Y. Furuya, W. Zhao, M. Unno, H. Noguchi, The electrochemical properties of low-crystallinity TiO2(B)-carbon composite as an anode material in lithium ion battery. Electrochim. Acta 136, 266–273 (2014)CrossRef
7.
Zurück zum Zitat Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K. Chen, Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014)CrossRef Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K. Chen, Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014)CrossRef
8.
Zurück zum Zitat R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, Facile synthetic route towards nanostructured Fe–TiO2(B), used as negative electrode for Li-ion batteries. J. Power Sources 278, 1–8 (2015)CrossRef R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, Facile synthetic route towards nanostructured Fe–TiO2(B), used as negative electrode for Li-ion batteries. J. Power Sources 278, 1–8 (2015)CrossRef
9.
Zurück zum Zitat L. Fernández-Werner, R. Faccio, A. Juan, H. Pardo, B. Montenegro, ÁW. Mombrú, Ultrathin, (001) and (100) TiO2(B) sheets: surface reactivity and structural properties. Appl. Surf. Sci. 290, 180–187 (2014)CrossRef L. Fernández-Werner, R. Faccio, A. Juan, H. Pardo, B. Montenegro, ÁW. Mombrú, Ultrathin, (001) and (100) TiO2(B) sheets: surface reactivity and structural properties. Appl. Surf. Sci. 290, 180–187 (2014)CrossRef
10.
Zurück zum Zitat X. Li, Y. Zhang, Q. Zhong, T. Li, H. Li, J. Huang, Surface decoration with MnO2 nanoplatelets on graphene/TiO2(B) hybrids for rechargeable lithium-ion batteries. Appl. Surf. Sci. 313, 877–882 (2014)CrossRef X. Li, Y. Zhang, Q. Zhong, T. Li, H. Li, J. Huang, Surface decoration with MnO2 nanoplatelets on graphene/TiO2(B) hybrids for rechargeable lithium-ion batteries. Appl. Surf. Sci. 313, 877–882 (2014)CrossRef
11.
Zurück zum Zitat A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, TiO2-B nanowires. Angew. Chem. Int. Ed. 43(17), 2286–2288 (2004)CrossRef A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, TiO2-B nanowires. Angew. Chem. Int. Ed. 43(17), 2286–2288 (2004)CrossRef
12.
Zurück zum Zitat Y. Tang, L. Hong, Q. Wu, J. Li, G. Hou, H. Cao et al., TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRef Y. Tang, L. Hong, Q. Wu, J. Li, G. Hou, H. Cao et al., TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRef
13.
Zurück zum Zitat Y. Harada, K. Hoshina, H. Inagaki, N. Takami, Influence of synthesis conditions on crystal formation and electrochemical properties of TiO2(B) particles as anode materials for lithium-ion batteries. Electrochim. Acta 112, 310–317 (2013)CrossRef Y. Harada, K. Hoshina, H. Inagaki, N. Takami, Influence of synthesis conditions on crystal formation and electrochemical properties of TiO2(B) particles as anode materials for lithium-ion batteries. Electrochim. Acta 112, 310–317 (2013)CrossRef
14.
Zurück zum Zitat H.Y. Wu, M.H. Hon, C.Y. Kuan, C. Leu, Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41(8), 9527–9533 (2015)CrossRef H.Y. Wu, M.H. Hon, C.Y. Kuan, C. Leu, Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41(8), 9527–9533 (2015)CrossRef
15.
Zurück zum Zitat J. Hou, R. Wu, P. Zhao, A. Chang, G. Ji, B. Gao, Q. Zhao, Graphene–TiO2(B) nanowires composite material: synthesis, characterization and application in lithium-ion batteries. Mater. Lett. 100, 173–176 (2013)CrossRef J. Hou, R. Wu, P. Zhao, A. Chang, G. Ji, B. Gao, Q. Zhao, Graphene–TiO2(B) nanowires composite material: synthesis, characterization and application in lithium-ion batteries. Mater. Lett. 100, 173–176 (2013)CrossRef
16.
Zurück zum Zitat K.Y. Kang, D.O. Shin, Y.G. Lee, S. Kim, K.M. Kim, Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries. J. Electroceram. 32(2–3), 246–254 (2014)CrossRef K.Y. Kang, D.O. Shin, Y.G. Lee, S. Kim, K.M. Kim, Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries. J. Electroceram. 32(2–3), 246–254 (2014)CrossRef
17.
Zurück zum Zitat Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao et al., Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces 8(12), 7957–7965 (2016)CrossRef Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao et al., Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces 8(12), 7957–7965 (2016)CrossRef
18.
Zurück zum Zitat S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu et al., Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu et al., Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef
19.
Zurück zum Zitat Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo et al., TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochem. Commun. 13(1), 46–49 (2011)CrossRef Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo et al., TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochem. Commun. 13(1), 46–49 (2011)CrossRef
20.
Zurück zum Zitat Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012)CrossRef Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012)CrossRef
21.
Zurück zum Zitat S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2(3), 322–327 (2012)CrossRef S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2(3), 322–327 (2012)CrossRef
22.
Zurück zum Zitat M. Fehse, E. Ventosa, Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem 80(5), 785–795 (2015)CrossRef M. Fehse, E. Ventosa, Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem 80(5), 785–795 (2015)CrossRef
23.
Zurück zum Zitat H. Huang, Z. Yu, W. Zhu, Y. Gan, Y. Xia, X. Tao, W. Zhang, Hierarchically porous nanoflowers from TiO2–B nanosheets with ultrahigh surface area for advanced lithium-ion batteries. J. Phys. Chem. Solids 75(5), 619–623 (2014)CrossRef H. Huang, Z. Yu, W. Zhu, Y. Gan, Y. Xia, X. Tao, W. Zhang, Hierarchically porous nanoflowers from TiO2–B nanosheets with ultrahigh surface area for advanced lithium-ion batteries. J. Phys. Chem. Solids 75(5), 619–623 (2014)CrossRef
24.
Zurück zum Zitat M.G. Choi, Y.G. Lee, S.W. Song, K.M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim. Acta 55(20), 5975–5983 (2010)CrossRef M.G. Choi, Y.G. Lee, S.W. Song, K.M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim. Acta 55(20), 5975–5983 (2010)CrossRef
25.
Zurück zum Zitat Z. Wei, R. Li, T. Huang, A. Yu, Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. J. Power Sources 238, 165–172 (2013)CrossRef Z. Wei, R. Li, T. Huang, A. Yu, Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. J. Power Sources 238, 165–172 (2013)CrossRef
26.
Zurück zum Zitat Y. Qiao, X. Hu, Y. Huang, Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. J. Nanopart. Res. 14(2), 1–7 (2012)CrossRef Y. Qiao, X. Hu, Y. Huang, Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. J. Nanopart. Res. 14(2), 1–7 (2012)CrossRef
27.
Zurück zum Zitat D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, V.V. Zheleznov, E.I. Voit, Y.V. Sushkov, S.L. Sinebryukhov, Enhancing the reversible capacity of nanostructured TiO2 (anatase) by Zr-doping using a sol–gel template method. Scripta Mater. 107, 136–139 (2015)CrossRef D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, V.V. Zheleznov, E.I. Voit, Y.V. Sushkov, S.L. Sinebryukhov, Enhancing the reversible capacity of nanostructured TiO2 (anatase) by Zr-doping using a sol–gel template method. Scripta Mater. 107, 136–139 (2015)CrossRef
28.
Zurück zum Zitat S.K.S. Patel, N.S. Gajbhiye, Room temperature magnetic properties of Cu-doped titanate, TiO2(B) and anatase nanorods synthesized by hydrothermal method. Mater. Chem. Phys. 132(1), 175–179 (2012)CrossRef S.K.S. Patel, N.S. Gajbhiye, Room temperature magnetic properties of Cu-doped titanate, TiO2(B) and anatase nanorods synthesized by hydrothermal method. Mater. Chem. Phys. 132(1), 175–179 (2012)CrossRef
29.
Zurück zum Zitat J.Y. Zhin, D. Samuelis, J. Maier, Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ionics 225, 590–593 (2012)CrossRef J.Y. Zhin, D. Samuelis, J. Maier, Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ionics 225, 590–593 (2012)CrossRef
30.
Zurück zum Zitat M.V. Reddy, N. Sharma, S. Adams, R.P. Rao, V.K. Peterson, B.V. Chowdari, Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5(37), 29535–29544 (2015)CrossRef M.V. Reddy, N. Sharma, S. Adams, R.P. Rao, V.K. Peterson, B.V. Chowdari, Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5(37), 29535–29544 (2015)CrossRef
31.
Zurück zum Zitat M. Lübke, I. Johnson, N.M. Makwana, D. Brett, P. Shearing, Z. Liu, J.A. Darr, High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries. J. Power Sources 294, 94–102 (2015)CrossRef M. Lübke, I. Johnson, N.M. Makwana, D. Brett, P. Shearing, Z. Liu, J.A. Darr, High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries. J. Power Sources 294, 94–102 (2015)CrossRef
32.
Zurück zum Zitat J. Fang, W. Liu, F. Yu, F. Qin, M. Wang, K. Zhang, Y. Lai, Fe, S co-doped anatase TiO2 nanotubes as anodes with improved electrochemical performance for lithium ion batteries. RSC Adv. 6(74), 70133–70140 (2016)CrossRef J. Fang, W. Liu, F. Yu, F. Qin, M. Wang, K. Zhang, Y. Lai, Fe, S co-doped anatase TiO2 nanotubes as anodes with improved electrochemical performance for lithium ion batteries. RSC Adv. 6(74), 70133–70140 (2016)CrossRef
33.
Zurück zum Zitat R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph. Sect. A 32(5), 751–767 (1976)CrossRef R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph. Sect. A 32(5), 751–767 (1976)CrossRef
34.
Zurück zum Zitat T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswari, Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram. Int. 40(8), 13159–13167 (2014)CrossRef T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswari, Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram. Int. 40(8), 13159–13167 (2014)CrossRef
35.
Zurück zum Zitat W. Khan, S. Ahmad, M.M. Hassan, A.H. Naqvi, Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt. Mater. 38, 278–285 (2014)CrossRef W. Khan, S. Ahmad, M.M. Hassan, A.H. Naqvi, Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt. Mater. 38, 278–285 (2014)CrossRef
36.
Zurück zum Zitat Y. Fu, H. Ming, Q. Zhou, L. Jin, X. Li, J. Zheng, Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim. Acta 134, 478–485 (2014)CrossRef Y. Fu, H. Ming, Q. Zhou, L. Jin, X. Li, J. Zheng, Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim. Acta 134, 478–485 (2014)CrossRef
37.
Zurück zum Zitat P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci. 46, 27–32 (2015)CrossRef P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci. 46, 27–32 (2015)CrossRef
38.
Zurück zum Zitat K. Chen, J. Li, J. Li, Y. Zhang, W. Wang, Synthesis and characterization of TiO2–montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV–vis irradiation. Colloids Surf. A 360(1), 47–56 (2010)CrossRef K. Chen, J. Li, J. Li, Y. Zhang, W. Wang, Synthesis and characterization of TiO2–montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV–vis irradiation. Colloids Surf. A 360(1), 47–56 (2010)CrossRef
39.
Zurück zum Zitat G.N. Shao, S.M. Imran, S.J. Jeon, S.J. Kang, S.M. Haider, H.T. Kim, Sol–gel synthesis of vanadium doped titania: effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight. Appl. Surf. Sci. 351, 1213–1223 (2015)CrossRef G.N. Shao, S.M. Imran, S.J. Jeon, S.J. Kang, S.M. Haider, H.T. Kim, Sol–gel synthesis of vanadium doped titania: effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight. Appl. Surf. Sci. 351, 1213–1223 (2015)CrossRef
40.
Zurück zum Zitat S.H. Lim, C. Ferraris, M. Schreyer, K. Shih, J.O. Leckie, T.J. White, The influence of cobalt doping on photocatalytic nano-titania: crystal chemistry and amorphicity. J. Solid State Chem. 180(10), 2905–2915 (2007)CrossRef S.H. Lim, C. Ferraris, M. Schreyer, K. Shih, J.O. Leckie, T.J. White, The influence of cobalt doping on photocatalytic nano-titania: crystal chemistry and amorphicity. J. Solid State Chem. 180(10), 2905–2915 (2007)CrossRef
41.
Zurück zum Zitat J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2. J. Mol. Catal. A 395, 42–51 (2014)CrossRef J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2. J. Mol. Catal. A 395, 42–51 (2014)CrossRef
42.
Zurück zum Zitat M. Tahir, N.S. Amin, Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl. Catal. A 493, 90–102 (2015)CrossRef M. Tahir, N.S. Amin, Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl. Catal. A 493, 90–102 (2015)CrossRef
43.
Zurück zum Zitat Y. Miao, Z. Zhai, L. Jiang, Y. Shi, Z. Yan, D. Duan, … J. Wang, Facile and new synthesis of cobalt doped mesoporous TiO2 with high visible-light performance. Powder Technol. 266, 365–371 (2014)CrossRef Y. Miao, Z. Zhai, L. Jiang, Y. Shi, Z. Yan, D. Duan, … J. Wang, Facile and new synthesis of cobalt doped mesoporous TiO2 with high visible-light performance. Powder Technol. 266, 365–371 (2014)CrossRef
44.
Zurück zum Zitat R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl. Catal. B 126, 47–54 (2012)CrossRef R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl. Catal. B 126, 47–54 (2012)CrossRef
45.
Zurück zum Zitat T.D. Pham, B.K. Lee, Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. J. Hazard. Mater. 300, 493–503 (2015)CrossRef T.D. Pham, B.K. Lee, Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. J. Hazard. Mater. 300, 493–503 (2015)CrossRef
46.
Zurück zum Zitat R. Vasilić, S. Stojadinović, N. Radić, P. Stefanov, Z. Dohčević-Mitrović, B. Grbić, One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Mater. Chem. Phys. 151, 337–344 (2015)CrossRef R. Vasilić, S. Stojadinović, N. Radić, P. Stefanov, Z. Dohčević-Mitrović, B. Grbić, One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Mater. Chem. Phys. 151, 337–344 (2015)CrossRef
47.
Zurück zum Zitat M. Khan, J. Li, W. Cao, A. Ullah, Advancement in the photocatalytic properties of TiO2 by vanadium and yttrium codoping: effect of impurity concentration on the photocatalytic activity. Sep. Purif. Technol. 130, 15–18 (2014)CrossRef M. Khan, J. Li, W. Cao, A. Ullah, Advancement in the photocatalytic properties of TiO2 by vanadium and yttrium codoping: effect of impurity concentration on the photocatalytic activity. Sep. Purif. Technol. 130, 15–18 (2014)CrossRef
48.
Zurück zum Zitat M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17(5), 1248–1255 (2005)CrossRef M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17(5), 1248–1255 (2005)CrossRef
49.
Zurück zum Zitat J. Wang, Y. Zhou, Z. Shao, Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochim. Acta 97, 386–392 (2013)CrossRef J. Wang, Y. Zhou, Z. Shao, Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochim. Acta 97, 386–392 (2013)CrossRef
50.
Zurück zum Zitat B.R. Kim, K.S. Yun, H.J. Jung, S.T. Myung, S.C. Jung, W. Kang, S.J. Kim, Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application. Curr. Appl. Phys. 13, S148–S151 (2013)CrossRef B.R. Kim, K.S. Yun, H.J. Jung, S.T. Myung, S.C. Jung, W. Kang, S.J. Kim, Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application. Curr. Appl. Phys. 13, S148–S151 (2013)CrossRef
Metadaten
Titel
Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes
verfasst von
Mahmoud Amirsalehi
Masoud Askari
Publikationsdatum
06.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9429-x

Weitere Artikel der Ausgabe 15/2018

Journal of Materials Science: Materials in Electronics 15/2018 Zur Ausgabe

Neuer Inhalt