Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

09.02.2021 | Original Article

Insight into an unsupervised two-step sparse transfer learning algorithm for speech diagnosis of Parkinson’s disease

verfasst von: Yongming Li, Xinyue Zhang, Pin Wang, Xiaoheng Zhang, Yuchuan Liu

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Speech diagnosis of Parkinson’s disease (PD) as a non-invasive and simple diagnosis method is particularly worth exploring. However, the number of samples of speech-based PD is relatively small, and there exist discrepancies in the distribution between subjects. In order to solve the two problems, a novel unsupervised two-step sparse transfer learning is proposed in this paper to tackle with PD speech diagnosis. In the first step, convolution sparse coding with the coordinate selection of samples and features is designed to learn speech structure from the source domain to replenish sample information of the target domain. In the second step, joint local structure distribution alignment is designed to maintain the neighbor relationship between the respective samples of the training set and test set, and reduce the distribution difference between the two domains at the same time. Two representative public PD speech datasets and one real-world PD speech dataset were exploited to verify the proposed method on PD speech diagnosis. Experimental results demonstrate that each step of the proposed method has a positive effect on the PD speech classification results, and it also delivers superior performance over the existing relative methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mirarchi D, Vizza P, Tradigo G et al (2017) Signal analysis for voice evaluation in Parkinson’s disease. In: 2017 IEEE International conference on healthcare informatics (ICHI). IEEE, pp 530–535 Mirarchi D, Vizza P, Tradigo G et al (2017) Signal analysis for voice evaluation in Parkinson’s disease. In: 2017 IEEE International conference on healthcare informatics (ICHI). IEEE, pp 530–535
2.
Zurück zum Zitat Vollstedt EJ, Kasten M, Klein C et al (2019) Using global team science to identify genetic Parkinson’s disease worldwide. Ann Neurol 86(2):153CrossRef Vollstedt EJ, Kasten M, Klein C et al (2019) Using global team science to identify genetic Parkinson’s disease worldwide. Ann Neurol 86(2):153CrossRef
3.
Zurück zum Zitat Tsanas A, Little MA, Mcsharry PE et al (2012) Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng 59(5):1264–1271CrossRef Tsanas A, Little MA, Mcsharry PE et al (2012) Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng 59(5):1264–1271CrossRef
4.
Zurück zum Zitat Gümüşçü A, Karadağ K, Tenekecı ME et al (2017) Genetic algorithm based feature selection on diagnosis of Parkinson disease via vocal analysis. In: 2017 25th Signal processing and communications applications conference (SIU). IEEE, pp 1–4 Gümüşçü A, Karadağ K, Tenekecı ME et al (2017) Genetic algorithm based feature selection on diagnosis of Parkinson disease via vocal analysis. In: 2017 25th Signal processing and communications applications conference (SIU). IEEE, pp 1–4
5.
Zurück zum Zitat Emrani S, McGuirk A, Xiao W (2017) Prognosis and diagnosis of Parkinson's disease using multi-task learning. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1457–1466 Emrani S, McGuirk A, Xiao W (2017) Prognosis and diagnosis of Parkinson's disease using multi-task learning. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1457–1466
6.
Zurück zum Zitat Tsanas A, Little MA, Mcsharry PE et al (2010) Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 57(4):884–893CrossRef Tsanas A, Little MA, Mcsharry PE et al (2010) Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 57(4):884–893CrossRef
7.
Zurück zum Zitat Gillivan-Murphy P, Miller N, Carding P (2019) Voice tremor in Parkinson’s disease: an acoustic study. J Voice 33(4):526–535CrossRef Gillivan-Murphy P, Miller N, Carding P (2019) Voice tremor in Parkinson’s disease: an acoustic study. J Voice 33(4):526–535CrossRef
8.
Zurück zum Zitat Wroge TJ, Özkanca Y, Demiroglu C et al (2018) Parkinson’s disease diagnosis using machine learning and voice. In: 2018 IEEE Signal processing in medicine and biology symposium (SPMB). IEEE, pp 1–7 Wroge TJ, Özkanca Y, Demiroglu C et al (2018) Parkinson’s disease diagnosis using machine learning and voice. In: 2018 IEEE Signal processing in medicine and biology symposium (SPMB). IEEE, pp 1–7
9.
Zurück zum Zitat Magee M, Copland D, Vogel AP (2019) Motor speech and non-motor language endophenotypes of Parkinson’s disease. Expert Rev Neurother 19:1191–1200CrossRef Magee M, Copland D, Vogel AP (2019) Motor speech and non-motor language endophenotypes of Parkinson’s disease. Expert Rev Neurother 19:1191–1200CrossRef
10.
Zurück zum Zitat Orozco-Arroyave JR, Belalcazar-Bolanos EA, Arias-Londoño JD et al (2015) Characterization methods for the detection of multiple voice disorders: neurological, functional, and laryngeal diseases. IEEE J Biomed Health Inform 19(6):1820–1828CrossRef Orozco-Arroyave JR, Belalcazar-Bolanos EA, Arias-Londoño JD et al (2015) Characterization methods for the detection of multiple voice disorders: neurological, functional, and laryngeal diseases. IEEE J Biomed Health Inform 19(6):1820–1828CrossRef
11.
Zurück zum Zitat Skodda S, Visser W, Schlegel U (2011) Vowel articulation in Parkinson’s disease. J Voice 25(4):467–472CrossRef Skodda S, Visser W, Schlegel U (2011) Vowel articulation in Parkinson’s disease. J Voice 25(4):467–472CrossRef
12.
Zurück zum Zitat Orozco-Arroyave JR, Hönig F, Arias-Londoño JD et al (2016) Automatic detection of Parkinson’s disease in running speech spoken in three different languages. J Acoust Soc Am 139(1):481–500CrossRef Orozco-Arroyave JR, Hönig F, Arias-Londoño JD et al (2016) Automatic detection of Parkinson’s disease in running speech spoken in three different languages. J Acoust Soc Am 139(1):481–500CrossRef
13.
Zurück zum Zitat Kalf J, De Swart B, Bloem BR et al (2007) 3.414 Guidelines for speech–language therapy in Parkinson’s disease. Parkinsonism Relat Disord 13(08):S183–S184CrossRef Kalf J, De Swart B, Bloem BR et al (2007) 3.414 Guidelines for speech–language therapy in Parkinson’s disease. Parkinsonism Relat Disord 13(08):S183–S184CrossRef
14.
Zurück zum Zitat Zou N, Huang X (2018) Empirical Bayes transfer learning for uncertainty characterization in predicting Parkinson’s disease severity. IISE Trans Healthcare Syst Eng 8(3):209–219CrossRef Zou N, Huang X (2018) Empirical Bayes transfer learning for uncertainty characterization in predicting Parkinson’s disease severity. IISE Trans Healthcare Syst Eng 8(3):209–219CrossRef
15.
Zurück zum Zitat Sakar BE, Isenkul ME, Sakar CO et al (2013) Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 17(4):828–834CrossRef Sakar BE, Isenkul ME, Sakar CO et al (2013) Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 17(4):828–834CrossRef
16.
Zurück zum Zitat Naseer A, Rani M, Naz S et al (2020) Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput Appl 32(3):839–854CrossRef Naseer A, Rani M, Naz S et al (2020) Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput Appl 32(3):839–854CrossRef
17.
Zurück zum Zitat Al-Fatlawi AH, Jabardi MH, Ling SH (2016) Efficient diagnosis system for Parkinson's disease using deep belief network. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE, pp 1324–1330 Al-Fatlawi AH, Jabardi MH, Ling SH (2016) Efficient diagnosis system for Parkinson's disease using deep belief network. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE, pp 1324–1330
18.
Zurück zum Zitat Derya A, Akif D (2016) An expert diagnosis system for Parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Dis 2016:1–9 Derya A, Akif D (2016) An expert diagnosis system for Parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Dis 2016:1–9
19.
Zurück zum Zitat Cai Z, Gu J, Chen H et al (2017) A new hybrid intelligent framework for predicting Parkinson’s disease. IEEE Access 5:17188–17200CrossRef Cai Z, Gu J, Chen H et al (2017) A new hybrid intelligent framework for predicting Parkinson’s disease. IEEE Access 5:17188–17200CrossRef
20.
Zurück zum Zitat Ozkan H (2016) A comparison of classification methods for telediagnosis of Parkinson’s disease. Entropy 18(4):115CrossRef Ozkan H (2016) A comparison of classification methods for telediagnosis of Parkinson’s disease. Entropy 18(4):115CrossRef
21.
Zurück zum Zitat Yang S, Zheng F, Luo X et al (2014) Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with Parkinson’s disease. PLoS ONE 9(2):e88825CrossRef Yang S, Zheng F, Luo X et al (2014) Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with Parkinson’s disease. PLoS ONE 9(2):e88825CrossRef
22.
Zurück zum Zitat Shahbakhti M, Taherifar D, Sorouri A (2013) Linear and non-linear speech features for detection of Parkinson's disease. In: The 6th 2013 biomedical engineering international conference. IEEE, pp 1–3 Shahbakhti M, Taherifar D, Sorouri A (2013) Linear and non-linear speech features for detection of Parkinson's disease. In: The 6th 2013 biomedical engineering international conference. IEEE, pp 1–3
23.
Zurück zum Zitat Shahbakhi M, Far DT, Tahami E (2014) Speech analysis for diagnosis of Parkinson’s disease using genetic algorithm and support vector machine. J Biomed Sci Eng 7(4):147–156CrossRef Shahbakhi M, Far DT, Tahami E (2014) Speech analysis for diagnosis of Parkinson’s disease using genetic algorithm and support vector machine. J Biomed Sci Eng 7(4):147–156CrossRef
24.
Zurück zum Zitat Behroozi M, Sami A (2016) A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests. Int J Telemed Appl 2016(11, supplement 5):1–9 Behroozi M, Sami A (2016) A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests. Int J Telemed Appl 2016(11, supplement 5):1–9
25.
Zurück zum Zitat Vásquez-Correa JC, Orozco-Arroyave JR, Arora R et al (2017) Multi-view representation learning via GCCA for multimodal analysis of Parkinson's disease. In: 2017 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2966–2970 Vásquez-Correa JC, Orozco-Arroyave JR, Arora R et al (2017) Multi-view representation learning via GCCA for multimodal analysis of Parkinson's disease. In: 2017 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2966–2970
26.
Zurück zum Zitat Mekyska J, Rektorova I, Smekal Z (2011) Selection of optimal parameters for automatic analysis of speech disorders in Parkinson's disease. In: 2011 34th International conference on telecommunications and signal processing (TSP). IEEE, pp 408–412 Mekyska J, Rektorova I, Smekal Z (2011) Selection of optimal parameters for automatic analysis of speech disorders in Parkinson's disease. In: 2011 34th International conference on telecommunications and signal processing (TSP). IEEE, pp 408–412
27.
Zurück zum Zitat Sakar CO, Kursun O (2010) Telediagnosis of Parkinson’s disease using measurements of dysphonia. J Med Syst 34(4):591–599CrossRef Sakar CO, Kursun O (2010) Telediagnosis of Parkinson’s disease using measurements of dysphonia. J Med Syst 34(4):591–599CrossRef
28.
Zurück zum Zitat Su M, Chuang KS (2015) Dynamic feature selection for detecting Parkinson's disease through voice signal. In: 2015 IEEE MTT-S 2015 international microwave workshop series on RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO). IEEE, pp 148–149 Su M, Chuang KS (2015) Dynamic feature selection for detecting Parkinson's disease through voice signal. In: 2015 IEEE MTT-S 2015 international microwave workshop series on RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO). IEEE, pp 148–149
29.
Zurück zum Zitat Caesarendra W, Ariyanto M, Setiawan JD et al (2014) A pattern recognition method for stage classification of Parkinson's disease utilizing voice features. In: 2014 IEEE Conference on biomedical engineering and sciences (IECBES). IEEE, pp 87–92 Caesarendra W, Ariyanto M, Setiawan JD et al (2014) A pattern recognition method for stage classification of Parkinson's disease utilizing voice features. In: 2014 IEEE Conference on biomedical engineering and sciences (IECBES). IEEE, pp 87–92
30.
Zurück zum Zitat Kaya E, Findik O, Babaoglu I et al (2011) Effect of discretization method on the diagnosis of Parkinson’s disease. Int J Innov Comput Inf Control 7:4669–4678 Kaya E, Findik O, Babaoglu I et al (2011) Effect of discretization method on the diagnosis of Parkinson’s disease. Int J Innov Comput Inf Control 7:4669–4678
31.
Zurück zum Zitat Benba A, Jilbab A, Hammouch A (2014) Hybridization of best acoustic cues for detecting persons with Parkinson's disease. In: 2014 Second world conference on complex systems (WCCS). IEEE, pp 622–625 Benba A, Jilbab A, Hammouch A (2014) Hybridization of best acoustic cues for detecting persons with Parkinson's disease. In: 2014 Second world conference on complex systems (WCCS). IEEE, pp 622–625
32.
Zurück zum Zitat Galaz Z, Mekyska J, Mzourek Z et al (2016) Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Comput Methods Prog Biomed 127:301–317CrossRef Galaz Z, Mekyska J, Mzourek Z et al (2016) Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Comput Methods Prog Biomed 127:301–317CrossRef
33.
Zurück zum Zitat Naranjo L, Pérez CJ, Campos-Roca Y et al (2016) Addressing voice recording replications for Parkinson’s disease detection. Expert Syst Appl 46:286–292CrossRef Naranjo L, Pérez CJ, Campos-Roca Y et al (2016) Addressing voice recording replications for Parkinson’s disease detection. Expert Syst Appl 46:286–292CrossRef
34.
Zurück zum Zitat Hirschauer TJ, Adeli H, Buford JA (2015) Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J Med Syst 39(11):179CrossRef Hirschauer TJ, Adeli H, Buford JA (2015) Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J Med Syst 39(11):179CrossRef
35.
Zurück zum Zitat Alqahtani EJ, Alshamrani FH, Syed HF et al (2018) Classification of Parkinson’s disease using NNge classification algorithm. In: 2018 21st Saudi computer society national computer conference (NCC). IEEE, pp 1–7 Alqahtani EJ, Alshamrani FH, Syed HF et al (2018) Classification of Parkinson’s disease using NNge classification algorithm. In: 2018 21st Saudi computer society national computer conference (NCC). IEEE, pp 1–7
36.
Zurück zum Zitat Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
37.
Zurück zum Zitat Kim DH, Wit H, Thurston M (2018) Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun 39(10):887–893CrossRef Kim DH, Wit H, Thurston M (2018) Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun 39(10):887–893CrossRef
38.
Zurück zum Zitat Das D, Lee CSG (2018) Sample-to-sample correspondence for unsupervised domain adaptation. Eng Appl Artif Intell 73(AUG.):80–91CrossRef Das D, Lee CSG (2018) Sample-to-sample correspondence for unsupervised domain adaptation. Eng Appl Artif Intell 73(AUG.):80–91CrossRef
39.
Zurück zum Zitat Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Thirtieth AAAI conference on artificial intelligence Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Thirtieth AAAI conference on artificial intelligence
40.
Zurück zum Zitat Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: European conference on computer vision. Springer, Cham, pp 443–450 Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: European conference on computer vision. Springer, Cham, pp 443–450
41.
Zurück zum Zitat Sakurai S, Uchiyama H, Shimada A et al (2018) Two-step transfer learning for semantic plant segmentation. In: 7th International conference on pattern recognition applications and methods Sakurai S, Uchiyama H, Shimada A et al (2018) Two-step transfer learning for semantic plant segmentation. In: 7th International conference on pattern recognition applications and methods
42.
Zurück zum Zitat An G, Yokota H, Motozawa N et al (2019) Deep learning classification models built with two-step transfer learning for age related macular degeneration diagnosis. In: 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE An G, Yokota H, Motozawa N et al (2019) Deep learning classification models built with two-step transfer learning for age related macular degeneration diagnosis. In: 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE
43.
Zurück zum Zitat Zhang R, Guo Z, Sun Y et al (2020) COVID19X-rayNet: a two-step transfer learning model for the COVID-19 detecting problem based on a limited number of chest X-ray images. Interdiscip Sci Comput Life Sci 12:1–11CrossRef Zhang R, Guo Z, Sun Y et al (2020) COVID19X-rayNet: a two-step transfer learning model for the COVID-19 detecting problem based on a limited number of chest X-ray images. Interdiscip Sci Comput Life Sci 12:1–11CrossRef
44.
Zurück zum Zitat Zhang H, Patel VM (2018) Convolutional sparse and low-rank coding-based image decomposition. IEEE Trans Image Process 27(5):2121–2133MathSciNetMATHCrossRef Zhang H, Patel VM (2018) Convolutional sparse and low-rank coding-based image decomposition. IEEE Trans Image Process 27(5):2121–2133MathSciNetMATHCrossRef
45.
46.
47.
Zurück zum Zitat Hang Chang; Ju Han; Cheng Zhong (2018) Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal Mach Intell 40(5):1182–1194CrossRef Hang Chang; Ju Han; Cheng Zhong (2018) Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal Mach Intell 40(5):1182–1194CrossRef
48.
Zurück zum Zitat Pan SJ, Tsang IW, Kwok JT et al (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef Pan SJ, Tsang IW, Kwok JT et al (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef
50.
Zurück zum Zitat Bousmalis K, Trigeorgis G, Silberman N et al (2016) Domain separation networks. In: Advances in neural information processing systems, NIPS 2016, pp 343–351 Bousmalis K, Trigeorgis G, Silberman N et al (2016) Domain separation networks. In: Advances in neural information processing systems, NIPS 2016, pp 343–351
51.
Zurück zum Zitat Kang G, Zheng L, Yan Y et al (2018) Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target expectation maximization. In: Proceedings of the European conference on computer vision (ECCV), pp 401–416 Kang G, Zheng L, Yan Y et al (2018) Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target expectation maximization. In: Proceedings of the European conference on computer vision (ECCV), pp 401–416
52.
Zurück zum Zitat Csurka G (2017) A comprehensive survey on domain adaptation for visual applications. In: Csurka G (ed) Domain adaptation in computer vision applications. Springer, Cham, pp 1–35CrossRef Csurka G (2017) A comprehensive survey on domain adaptation for visual applications. In: Csurka G (ed) Domain adaptation in computer vision applications. Springer, Cham, pp 1–35CrossRef
53.
Zurück zum Zitat Pinheiro PO (2018) Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8004–8013 Pinheiro PO (2018) Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8004–8013
54.
Zurück zum Zitat Sener O, Song HO, Saxena A et al (2016) Learning transferrable representations for unsupervised domain adaptation. In: Advances in neural information processing systems, NIPS 2016, pp 2110–2118 Sener O, Song HO, Saxena A et al (2016) Learning transferrable representations for unsupervised domain adaptation. In: Advances in neural information processing systems, NIPS 2016, pp 2110–2118
55.
Zurück zum Zitat Haeusser P, Frerix T, Mordvintsev A et al (2017) Associative domain adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2765–2773 Haeusser P, Frerix T, Mordvintsev A et al (2017) Associative domain adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2765–2773
57.
Zurück zum Zitat Saito K, Watanabe K, Ushiku Y et al (2018) Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3723–3732 Saito K, Watanabe K, Ushiku Y et al (2018) Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3723–3732
58.
Zurück zum Zitat Pei Z, Cao Z, Long M et al (2018) Multi-adversarial domain adaptation. In: Thirty-second AAAI conference on artificial intelligence Pei Z, Cao Z, Long M et al (2018) Multi-adversarial domain adaptation. In: Thirty-second AAAI conference on artificial intelligence
59.
Zurück zum Zitat Liu F, Zhang G, Lu J (2020) Heterogeneous domain adaptation: an unsupervised approach. IEEE Trans Neural Netw Learn Syst 31:5588–5602MathSciNetCrossRef Liu F, Zhang G, Lu J (2020) Heterogeneous domain adaptation: an unsupervised approach. IEEE Trans Neural Netw Learn Syst 31:5588–5602MathSciNetCrossRef
60.
Zurück zum Zitat Long M, Wang J, Ding G et al (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2200–2207 Long M, Wang J, Ding G et al (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2200–2207
61.
Zurück zum Zitat Gong B, Shi Y, Sha F et al (2015) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on computer vision and pattern recognition. IEEE Gong B, Shi Y, Sha F et al (2015) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on computer vision and pattern recognition. IEEE
62.
Zurück zum Zitat Wang J, Feng W, Chen Y et al (2018) Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM International conference on multimedia, pp 402–410 Wang J, Feng W, Chen Y et al (2018) Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM International conference on multimedia, pp 402–410
63.
Zurück zum Zitat Long M, Cao Y et al (2018) Transferable representation learning with deep adaptation networks. IEEE Trans Pattern Anal Mach Intell 41:3071–3085CrossRef Long M, Cao Y et al (2018) Transferable representation learning with deep adaptation networks. IEEE Trans Pattern Anal Mach Intell 41:3071–3085CrossRef
64.
Zurück zum Zitat Long M, Zhu H, Wang J et al (2017) Deep transfer learning with joint adaptation networks. In: The 34th international conference on machine learning, Sydney, pp 2208–2217 Long M, Zhu H, Wang J et al (2017) Deep transfer learning with joint adaptation networks. In: The 34th international conference on machine learning, Sydney, pp 2208–2217
65.
Zurück zum Zitat Ganin Y, Ustinova E, Ajakan H et al (2017) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096–2030MathSciNetMATH Ganin Y, Ustinova E, Ajakan H et al (2017) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096–2030MathSciNetMATH
66.
Zurück zum Zitat Long M, Cao Z, Wang J et al (2018) Conditional adversarial domain adaptation. In: 32nd Conference on neural information processing systems (NeurIPS 2018), Montreal, Canada pp 1640–1650 Long M, Cao Z, Wang J et al (2018) Conditional adversarial domain adaptation. In: 32nd Conference on neural information processing systems (NeurIPS 2018), Montreal, Canada pp 1640–1650
67.
Zurück zum Zitat Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: European conference on machine learning. Springer, Berlin, pp 171–182 Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: European conference on machine learning. Springer, Berlin, pp 171–182
68.
Zurück zum Zitat Boyd S, Parikh N (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122MATHCrossRef Boyd S, Parikh N (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122MATHCrossRef
69.
Zurück zum Zitat Wang J, Chen Y, Hao S et al (2017) Balanced distribution adaptation for transfer learning. In: 2017 IEEE International conference on data mining (ICDM). IEEE, pp 1129–1134 Wang J, Chen Y, Hao S et al (2017) Balanced distribution adaptation for transfer learning. In: 2017 IEEE International conference on data mining (ICDM). IEEE, pp 1129–1134
70.
Zurück zum Zitat Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. In: AAAI, vol 8, pp 677–682 Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. In: AAAI, vol 8, pp 677–682
71.
Zurück zum Zitat He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems, NIPS 2004, pp 153–160 He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems, NIPS 2004, pp 153–160
72.
Zurück zum Zitat Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Im: NIPS'01: Proceedings of the 14th international conference on neural information processing systems: natural and synthetic, January 2001, pp 585–591 Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Im: NIPS'01: Proceedings of the 14th international conference on neural information processing systems: natural and synthetic, January 2001, pp 585–591
73.
Zurück zum Zitat Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRef Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRef
74.
Zurück zum Zitat Little MA, Mcshappy PE, Roberts SJ et al (2007) Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed Eng OnLine 6:23–41CrossRef Little MA, Mcshappy PE, Roberts SJ et al (2007) Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed Eng OnLine 6:23–41CrossRef
75.
Zurück zum Zitat Canturk I, Karabiber F (2016) A machine learning system for the diagnosis of Parkinson’s disease from speech signals and its application to multiple speech signal types. Arab J Sci Eng 41(12):5049–5059CrossRef Canturk I, Karabiber F (2016) A machine learning system for the diagnosis of Parkinson’s disease from speech signals and its application to multiple speech signal types. Arab J Sci Eng 41(12):5049–5059CrossRef
76.
Zurück zum Zitat Eskıdere Ö, Karatutlu A, Ünal C (2015) Detection of Parkinson's disease from vocal features using random subspace classifier ensemble. In: 2015 Twelve international conference on electronics computer and computation (ICECCO). IEEE, pp 1–4 Eskıdere Ö, Karatutlu A, Ünal C (2015) Detection of Parkinson's disease from vocal features using random subspace classifier ensemble. In: 2015 Twelve international conference on electronics computer and computation (ICECCO). IEEE, pp 1–4
77.
Zurück zum Zitat Zhang H-H, Yang L, Liu Y, Wang P, Yin J, Li Y, Qiu M, Zhu X, Yan F (2016) Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. BioMed Eng OnLine 15(1):122–143CrossRef Zhang H-H, Yang L, Liu Y, Wang P, Yin J, Li Y, Qiu M, Zhu X, Yan F (2016) Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. BioMed Eng OnLine 15(1):122–143CrossRef
78.
Zurück zum Zitat Benba A, Jilbab A, Hammouch A (2017) Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s disease. IRBM 38(6):346–351CrossRef Benba A, Jilbab A, Hammouch A (2017) Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s disease. IRBM 38(6):346–351CrossRef
79.
Zurück zum Zitat Li Y, Zhang C, Jia Y et al (2017) Simultaneous learning of speech feature and segment for classification of Parkinson disease. In: 2017 IEEE 19th International conference on e-health networking, applications and services (Healthcom). IEEE, pp 1–6 Li Y, Zhang C, Jia Y et al (2017) Simultaneous learning of speech feature and segment for classification of Parkinson disease. In: 2017 IEEE 19th International conference on e-health networking, applications and services (Healthcom). IEEE, pp 1–6
80.
Zurück zum Zitat Vadovský M, Paralič J (2017) Parkinson's disease patients classification based on the speech signals. In: 2017 IEEE 15th International symposium on applied machine intelligence and informatics (SAMI). IEEE, pp 000321–000326 Vadovský M, Paralič J (2017) Parkinson's disease patients classification based on the speech signals. In: 2017 IEEE 15th International symposium on applied machine intelligence and informatics (SAMI). IEEE, pp 000321–000326
81.
Zurück zum Zitat Zhang YN (2017) Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinson’s Dis 2017:1–11 Zhang YN (2017) Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinson’s Dis 2017:1–11
82.
Zurück zum Zitat Benba A, Jilbab A, Hammouch A (2016) Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinsons disease and healthy people. Int J Speech Technol 19(3):449–456CrossRef Benba A, Jilbab A, Hammouch A (2016) Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinsons disease and healthy people. Int J Speech Technol 19(3):449–456CrossRef
83.
Zurück zum Zitat Kraipeerapun P, Amornsamankul S (2015) Using stacked generalization and complementary neural networks to predict Parkinson's disease. In: 2015 11th International conference on natural computation (ICNC). IEEE, pp 1290–1294 Kraipeerapun P, Amornsamankul S (2015) Using stacked generalization and complementary neural networks to predict Parkinson's disease. In: 2015 11th International conference on natural computation (ICNC). IEEE, pp 1290–1294
84.
Zurück zum Zitat Khan MM, Mendes A, Chalup SK (2018) Evolutionary wavelet neural network ensembles for breast cancer and Parkinson’s disease prediction. PLoS ONE 13(2):e0192192CrossRef Khan MM, Mendes A, Chalup SK (2018) Evolutionary wavelet neural network ensembles for breast cancer and Parkinson’s disease prediction. PLoS ONE 13(2):e0192192CrossRef
85.
Zurück zum Zitat Ali L, Zhu C, Zhang Z et al (2019) Automated detection of Parkinson’s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J Transl Eng Health Med 7:1–10CrossRef Ali L, Zhu C, Zhang Z et al (2019) Automated detection of Parkinson’s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J Transl Eng Health Med 7:1–10CrossRef
86.
Zurück zum Zitat Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Mach Learn Res 10(12):1829–1850MathSciNetMATH Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Mach Learn Res 10(12):1829–1850MathSciNetMATH
87.
Zurück zum Zitat Psorakis I, Damoulas T, Girolami MA (2010) Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans Neural Netw 21(10):1588–1598CrossRef Psorakis I, Damoulas T, Girolami MA (2010) Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans Neural Netw 21(10):1588–1598CrossRef
88.
Zurück zum Zitat Guo PF, Bhattacharya P, Kharma NN (2010) Advances in detecting Parkinson’s disease. In: Medical biometrics, second international conference, ICMB, Hong Kong, China, June. DBLP Guo PF, Bhattacharya P, Kharma NN (2010) Advances in detecting Parkinson’s disease. In: Medical biometrics, second international conference, ICMB, Hong Kong, China, June. DBLP
89.
Zurück zum Zitat Das R (2010) A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl 37(2):1568–1572CrossRef Das R (2010) A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl 37(2):1568–1572CrossRef
90.
Zurück zum Zitat Ozcift A, Gulten A (2011) Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Prog Biomed 104(3):443–451CrossRef Ozcift A, Gulten A (2011) Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Prog Biomed 104(3):443–451CrossRef
91.
Zurück zum Zitat Luukka P (2011) Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst Appl 38(4):4600–4607CrossRef Luukka P (2011) Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst Appl 38(4):4600–4607CrossRef
92.
Zurück zum Zitat Li DC, Liu CW, Hu SC (2011) A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med 52(1):45–52CrossRef Li DC, Liu CW, Hu SC (2011) A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med 52(1):45–52CrossRef
93.
Zurück zum Zitat Spadoto AA, Guido RC, Carnevali FL et al (2011) Improving Parkinson's disease identification through evolutionary-based feature selection. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 7857–7860 Spadoto AA, Guido RC, Carnevali FL et al (2011) Improving Parkinson's disease identification through evolutionary-based feature selection. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 7857–7860
94.
Zurück zum Zitat Polat K (2012) Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int J Syst Sci 43(4):597–609MathSciNetMATHCrossRef Polat K (2012) Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int J Syst Sci 43(4):597–609MathSciNetMATHCrossRef
95.
Zurück zum Zitat Chen HL, Huang CC, Yu XG et al (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 40(1):263–271CrossRef Chen HL, Huang CC, Yu XG et al (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 40(1):263–271CrossRef
96.
Zurück zum Zitat Åström F, Koker R (2011) A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst Appl 38(10):12470–12474CrossRef Åström F, Koker R (2011) A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst Appl 38(10):12470–12474CrossRef
97.
Zurück zum Zitat Daliri MR (2013) Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed Signal Process Control 8(1):66–70CrossRef Daliri MR (2013) Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed Signal Process Control 8(1):66–70CrossRef
98.
Zurück zum Zitat Zuo WL, Wang ZY, Liu T et al (2013) Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed Signal Process Control 8(4):364–373CrossRef Zuo WL, Wang ZY, Liu T et al (2013) Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed Signal Process Control 8(4):364–373CrossRef
99.
Zurück zum Zitat Kadam VJ, Jadhav SM (2019) Feature ensemble learning based on sparse autoencoders for diagnosis of Parkinson’s disease. In: Kadam V, Jadhav SM (eds) Computing, communication and signal processing. Springer, Singapore, pp 567–581 Kadam VJ, Jadhav SM (2019) Feature ensemble learning based on sparse autoencoders for diagnosis of Parkinson’s disease. In: Kadam V, Jadhav SM (eds) Computing, communication and signal processing. Springer, Singapore, pp 567–581
100.
Zurück zum Zitat Ma H, Tan T, Zhou H et al (2016) Support vector machine-recursive feature elimination for the diagnosis of Parkinson disease based on speech analysis. In: 2016 Seventh international conference on intelligent control and information processing (ICICIP). IEEE, pp 34–40 Ma H, Tan T, Zhou H et al (2016) Support vector machine-recursive feature elimination for the diagnosis of Parkinson disease based on speech analysis. In: 2016 Seventh international conference on intelligent control and information processing (ICICIP). IEEE, pp 34–40
101.
Zurück zum Zitat Dash S, Thulasiram R, Thulasiraman P (2017) An enhanced chaos-based firefly model for Parkinson's disease diagnosis and classification. In: 2017 International conference on information technology (ICIT). IEEE, pp 159–164 Dash S, Thulasiram R, Thulasiraman P (2017) An enhanced chaos-based firefly model for Parkinson's disease diagnosis and classification. In: 2017 International conference on information technology (ICIT). IEEE, pp 159–164
102.
Zurück zum Zitat Gürüler H (2017) A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl 28(7):1657–1666CrossRef Gürüler H (2017) A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl 28(7):1657–1666CrossRef
Metadaten
Titel
Insight into an unsupervised two-step sparse transfer learning algorithm for speech diagnosis of Parkinson’s disease
verfasst von
Yongming Li
Xinyue Zhang
Pin Wang
Xiaoheng Zhang
Yuchuan Liu
Publikationsdatum
09.02.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05741-0

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe